Inverse Boundary Value Problems For Scalar and Elastic Waves: Stability Estimates and Iterative Reconstruction
标量波和弹性波的逆边值问题:稳定性估计和迭代重建
基本信息
- 批准号:1559587
- 负责人:
- 金额:$ 19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project centers on inverse problems that enable innovative new technologies for interpreting the rich information contained in seismic wavefields. The results will fundamentally improve the ability to reconstruct highly heterogeneous geological media with structure from observational data. The nonlinear approaches that will be developed will yield possible discoveries of hitherto unknown substructures in our planet's interior, such as cracks and faults including the presence of fluids and the crust-mantle interface. On the one hand, more accurate mapping and characterization of shallow and deep mantle structures will facilitate integrated geological and geophysical studies, and may lead to more comprehensive models of Earth's dynamic interior. On the other hand, these methods will also aid in developing strategies for monitoring or identifying changes over time and benefit natural resources management. The results will also give important insight in how processes at the surface are coupled to processes in Earth's deep interior. The principal investigator and his colleagues will develop a comprehensive analysis of the seismic inverse boundary value problems in the time-harmonic and hyperbolic formulations. They consider Cauchy data and the Dirichlet-to-Neumann map or the Neumann-to-Dirichlet map as the data. The different formulations emphasize different 'features' of the data and lead to different conditions for stable recovery. The principal investigator and his colleagues will analyze in conjunction the inverse boundary value problems for the Helmholtz equation and the wave equation and their extensions to systems describing (time-harmonic) elastic waves. They plan to study global uniqueness in the case of time-harmonic elastic waves with coefficients containing conormal singularities (interfaces) and of limited smoothness. They will analyze conditions for Lipschitz stability of the relevant inverse maps with partial data. This will enable the team to obtain estimates for the stability constants, which leads to hierarchies of subspaces of coefficients, and develop a family of local iterative methods via the introduction of generalized variational source conditions. They also plan to develop resolvent estimates which provide a connection between the time-harmonic and hyperbolic formulations and analyze conditions for the unique recovery of piecewise smooth coefficients from high-frequency data. Finally, they will obtain a method of direct reconstruction of elastic parameters near the boundary (a free surface), and revisit the use of complex geometrical optics solutions in proofs of uniqueness theorems and adapt them to a framework of iterative regularization and reconstruction without very low frequencies in the data.
该项目以反演问题为中心,使创新新技术能够解释地震波场中包含的丰富信息。研究结果将从根本上提高根据观测数据重建具有结构的高度异质地质介质的能力。将开发的非线性方法将有可能发现地球内部迄今为止未知的子结构,例如裂缝和断层,包括流体的存在和壳幔界面。一方面,更准确地绘制和表征浅层和深层地幔结构将有助于综合地质和地球物理研究,并可能产生更全面的地球动态内部模型。另一方面,这些方法还将有助于制定监测或识别随时间变化的策略,并有利于自然资源管理。研究结果还将为了解地表过程如何与地球深处的过程耦合提供重要见解。首席研究员和他的同事将对时谐和双曲公式中的地震反边值问题进行全面分析。他们将柯西数据和狄利克雷到诺伊曼映射或诺伊曼到狄利克雷映射视为数据。不同的表述强调数据的不同“特征”,并导致稳定恢复的不同条件。首席研究员和他的同事将结合亥姆霍兹方程和波动方程的反边值问题及其对描述(时谐)弹性波的系统的扩展进行分析。他们计划研究时谐弹性波的全局唯一性,其系数包含共常奇点(界面)和有限的平滑度。他们将使用部分数据分析相关反映射的 Lipschitz 稳定性条件。这将使团队能够获得稳定性常数的估计,从而产生系数子空间的层次结构,并通过引入广义变分源条件开发一系列局部迭代方法。他们还计划开发解析估计,提供时谐公式和双曲线公式之间的联系,并分析从高频数据中独特恢复分段平滑系数的条件。最后,他们将获得一种直接重建边界(自由表面)附近弹性参数的方法,并重新审视复杂几何光学解决方案在唯一性定理证明中的使用,并使它们适应迭代正则化和重建的框架,而无需很低的成本。数据中的频率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maarten de Hoop其他文献
原子間力顕微鏡を用いた化学研究
使用原子力显微镜进行化学研究
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Maarten de Hoop;Gen Nakamura and Jian Zhai;川井茂樹 - 通讯作者:
川井茂樹
Maarten de Hoop的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maarten de Hoop', 18)}}的其他基金
Recovery of Material Parameters and Friction Laws Associated with Earthquakes, Interseismic Slip, and Tidal Deformation
恢复与地震、震间滑移和潮汐变形相关的材料参数和摩擦定律
- 批准号:
2108175 - 财政年份:2021
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Seismology- and Geodesy-Based Inverse Problems Crossing Scales, with Scattering, Anisotropy and Nonlinear Elasticity
基于地震学和大地测量学的跨尺度反问题,具有散射、各向异性和非线性弹性
- 批准号:
1815143 - 财政年份:2018
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Inverse Boundary Value Problems For Scalar and Elastic Waves: Stability Estimates and Iterative Reconstruction
标量波和弹性波的逆边值问题:稳定性估计和迭代重建
- 批准号:
1516061 - 财政年份:2015
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
CMG COLLABORATIVE RESEARCH: Nonlinear elastic-wave inverse scattering and tomography - from cracks to mantle convection
CMG 合作研究:非线性弹性波逆散射和断层扫描 - 从裂缝到地幔对流
- 批准号:
1025318 - 财政年份:2010
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Collaborative Research: Stochastic and Multiscale Analysis of Ambient-Noise Generated Scattered Waves and Imaging
合作研究:环境噪声产生的散射波和成像的随机和多尺度分析
- 批准号:
0908450 - 财政年份:2009
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Collaborative Research: CSEDI--Multi-scale Analysis of Mantle Discontinuities Using Inverse Scattering of SS Waves and Experimental Mineral Physics
合作研究:CSEDI——利用SS波逆散射和实验矿物物理对地幔不连续性进行多尺度分析
- 批准号:
0757814 - 财政年份:2008
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
CMG-Colllaborative Research: Multi-Scale (Wave Equation) Tomographic Imaging with USArray Waveform Data
CMG 合作研究:使用 USArray 波形数据进行多尺度(波方程)断层成像
- 批准号:
0724644 - 财政年份:2007
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Collaborative Research: Wave Equation Tomography and Data Assimilation: A New Approach to Estimating P and S Speed Variations in Earth's Lower Mantle
合作研究:波动方程断层扫描和数据同化:估计地球下地幔 P 和 S 速度变化的新方法
- 批准号:
0630493 - 财政年份:2005
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Collaborative Research: Anisotropy and Mantle Flow Beneath Japan from Seismological Observations and Geodynamical Modeling
合作研究:地震观测和地球动力学模拟的日本地下各向异性和地幔流
- 批准号:
0630494 - 财政年份:2005
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Collaborative Research-CMG: Development and Application of Inference Methods for Imaging Neighborhoods of Earth's Core-Mantle Boundary With Broad-Band Scs and SKKS Coda Waves
合作研究-CMG:宽带Scs和SKKS尾波成像地球核幔边界附近的推理方法的开发和应用
- 批准号:
0630492 - 财政年份:2005
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
相似国自然基金
消费者感知零售商创新性:结构测量及对感知价值和消费者忠诚的三重作用路径与边界条件研究
- 批准号:71872030
- 批准年份:2018
- 资助金额:48.0 万元
- 项目类别:面上项目
VEGFR2靶向胶质瘤探针在判定脑部胶质瘤边界及侵袭性中的价值研究
- 批准号:81471709
- 批准年份:2014
- 资助金额:73.0 万元
- 项目类别:面上项目
负面公司联想事件与企业应对策略的影响机制和边界条件:多渠道背景下的双重视角研究
- 批准号:71472045
- 批准年份:2014
- 资助金额:61.0 万元
- 项目类别:面上项目
产业价值链跨境分解、多源比较优势与产品市场一体化研究
- 批准号:71203040
- 批准年份:2012
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
跨企业边界的成本协同管理与价值创造驱动因素研究
- 批准号:70872096
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
Inverse Boundary Value Problems For Scalar and Elastic Waves: Stability Estimates and Iterative Reconstruction
标量波和弹性波的逆边值问题:稳定性估计和迭代重建
- 批准号:
1516061 - 财政年份:2015
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
On a stability estimate for the identification of unknown inclusions for inverse boundary value problems
逆边值问题中未知夹杂物识别的稳定性估计
- 批准号:
15K17555 - 财政年份:2015
- 资助金额:
$ 19万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Inverse Boundary Value Problems with Incomplete Data
不完整数据的逆边值问题
- 批准号:
1109561 - 财政年份:2011
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Inverse Boundary Value Problems in Partial Differential Equations
偏微分方程中的反边值问题
- 批准号:
1114944 - 财政年份:2010
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Inverse Boundary Value Problems in Partial Differential Equations
偏微分方程中的反边值问题
- 批准号:
0807502 - 财政年份:2008
- 资助金额:
$ 19万 - 项目类别:
Standard Grant