On a stability estimate for the identification of unknown inclusions for inverse boundary value problems

逆边值问题中未知夹杂物识别的稳定性估计

基本信息

  • 批准号:
    15K17555
  • 负责人:
  • 金额:
    $ 2万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
  • 财政年份:
    2015
  • 资助国家:
    日本
  • 起止时间:
    2015-04-01 至 2020-03-31
  • 项目状态:
    已结题

项目摘要

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
国立台湾大学(台湾)
国立台湾大学(台湾)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Increasing stabilities in inverse problems for the acoustic equation and the Schroedinger equation
提高声学方程和薛定谔方程反演问题的稳定性
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    永安聖
  • 通讯作者:
    永安聖
偏微分方程式姫路研究集会
姬路偏微分方程研究小组
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nagayasu Sei其他文献

Nagayasu Sei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Geometry of partial differential equations and inverse problems
偏微分方程的几何和反问题
  • 批准号:
    18H01126
  • 财政年份:
    2018
  • 资助金额:
    $ 2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
New developments in the research of discrete Sobolev inequalities - Applications to mathematical engineering
离散Sobolev不等式研究新进展——在数学工程中的应用
  • 批准号:
    18K03347
  • 财政年份:
    2018
  • 资助金额:
    $ 2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New development of the nonlinear elliptic eigenvalue probelms and inverse bifurcation problems
非线性椭圆特征值问题与逆分岔问题的新进展
  • 批准号:
    17K05330
  • 财政年份:
    2017
  • 资助金额:
    $ 2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Scattering theory on manifolds and graphs via inhomogeneities
基于不均匀性的流形和图的散射理论
  • 批准号:
    16K17630
  • 财政年份:
    2016
  • 资助金额:
    $ 2万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Asymptotic analysis for wave propagation with refracted phenomena and the application to scattering theory
折射现象波传播的渐近分析及其在散射理论中的应用
  • 批准号:
    16K05241
  • 财政年份:
    2016
  • 资助金额:
    $ 2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了