XPS: FULL: CCA: Collaborative Research: SPARTA: a Stream-based Processor And Run-Time Architecture

XPS:完整:CCA:协作研究:SPARTA:基于流的处理器和运行时架构

基本信息

  • 批准号:
    1547036
  • 负责人:
  • 金额:
    $ 30.73万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-05-15 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

Computer systems have undergone a fundamental transformation recently, from single‐core processors to devices with increasingly higher core counts within a single chip. The semi‐conductor industry now faces the infamous power and utilization walls, that is, physical constraints such as levels of power and energy consumption, but also reliability of the various components, must be taken into account not only during the chip fabrication process, but also when generating machine code and during program execution. To meet these challenges, heterogeneity in design, both at the architecture and technology levels, will be the prevailing approach for energy efficient computing as specialized cores, accelerators, and graphical processing units (GPUs) can eliminate the energy overheads of general‐purpose homogeneous cores. However, with future technological challenges pointing in the direction of on‐chip heterogeneity, and because of the traditional difficulty of parallel programming, it becomes imperative to produce new system software stacks that can take advantage of the heterogeneous hardware. This project proposes to rethink the whole hardware‐software interface, by researching novel ways to design many‐core chip architectures and weaving heterogeneous components together and binding them by a fast and energy efficient on‐chip interconnection network. On top of it will lay a system software layer to efficiently drive applications and map them onto the best suited components of the chip. Both the hardware and software layer are encompassed by a novel execution model, which describes how to orchestrate the various parts of a program in the most efficient way (be it with respect to power and energy, performance, or reliability). To achieve these goals, the development of a new model of computation called SPARTA (Stream-based Processor And RunTime Architecture) is proposed. The proposed model combines a new runtime and compiler technology with a hierarchical heterogeneous many‐core chip and features hardware mechanisms for stream‐based fine‐grain program execution models to be reflected in different new software/hardware systems. Many issues are be envisioned, including programmability, scalability, performance evaluation, and power efficiency. Specifically, the goal is to identify the major challenges and obstacles toward an efficient exploitation of parallelism and scalability. To do so, traditional approaches will be re-evaluated by studying a collection of representative programs. A vertical design methodology is then proposed to effectively address the above challenges through the SPARTA approach and its implementation. In particular, the proposed cross-layer methodology consists of (a) a programming/execution model that will combine the Codelet model (leveraging our past research in dataflow models and extensions) with generalized streams: the Streaming Codelets, (b) an architecture model that will efficiently support the Streaming Codelets in heterogeneous hardware, and (c) a system software Stack that will be capable of effectively mapping Streaming Codelets to the proposed architecture. Finally, a qualitative and quantitative study of SPARTA will be performed via selected benchmarks and a consolidated methodology based on experimentation and analysis. The holistic cross-layer design methodology spanning the hardware/software stack and the reliability techniques developed from this research will significantly impact next generation multi‐core and System‐on‐Chip (SoC) architectures with improvements in energy efficiency, programmability, performance and robustness.
计算机系统最近经历了根本性的转变,从单核处理器到单芯片内核心数量越来越多的设备。半导体行业现在面临着臭名昭著的功率和利用壁垒,即不仅在芯片制造过程中必须考虑功率和能耗水平等物理限制,而且还必须考虑各种组件的可靠性,而且在生成机器代码和程序执行期间也是如此。为了应对这些挑战,架构和技术层面的异构设计将成为节能计算的主流方法,因为专用核心、加速器和图形处理单元 (GPU) 可以消除通用的能源开销同质核心。然而,随着未来的技术挑战指向片上异构的方向,并且由于并行编程的传统困难,生产能够利用异构硬件的新的系统软件堆栈变得势在必行。该项目建议重新思考整个硬件/软件接口,通过研究设计多核心芯片架构的新方法,将异构组件编织在一起,并通过快速、节能的片上互连网络将它们绑定在一起。在其之上将放置一个系统软件层,以有效地驱动应用程序并将它们映射到最适合的芯片组件上。硬件和软件层都包含在一种新颖的执行模型中,该模型描述了如何以最有效的方式编排程序的各个部分(无论是在功率和能源、性能还是可靠性方面)。为了实现这些目标,建议开发一种称为 SPARTA(基于流的处理器和运行时架构)的新计算模型。所提出的模型将新的运行时和编译器技术与分层异构多核芯片相结合,并具有基于流的细粒度程序执行模型的硬件机制,以反映在不同的新软件/硬件系统中。可以预见许多问题,包括可编程性、可扩展性、性能评估和功效。具体来说,目标是确定有效利用并行性和可扩展性的主要挑战和障碍。为此,将通过研究一系列代表性项目来重新评估传统方法。然后提出了一种垂直设计方法,通过 SPARTA 方法及其实施来有效解决上述挑战。特别是,所提出的跨层方法包括(a)一个编程/执行模型,它将 Codelet 模型(利用我们过去在数据流模型和扩展方面的研究)与广义流:Streaming Codelet 相结合,(b)一个架构模型它将有效地支持异构硬件中的 Streaming Codelet,以及 (c) 一个能够有效地将 Streaming Codelet 映射到所提议的架构的系统软件堆栈。最后,将通过选定的基准和基于实验和分析的综合方法对 SPARTA 进行定性和定量研究。涵盖硬件/软件堆栈的整体跨层设计方法以及根据本研究开发的可靠性技术将显着影响下一代多核和片上系统 (SoC) 架构,并提高能效、可编程性、性能和鲁棒性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ahmed Louri其他文献

Nanoscale Accelerators for Artificial Neural Networks
人工神经网络纳米级加速器
  • DOI:
    10.1109/mnano.2022.3208757
  • 发表时间:
    2022-12-01
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Farzad Niknia;Ziheng Wang;Shanshan Liu;Ahmed Louri;Fabrizio Lombardi
  • 通讯作者:
    Fabrizio Lombardi

Ahmed Louri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ahmed Louri', 18)}}的其他基金

Collaborative Research: SHF: Medium: EPIC: Exploiting Photonic Interconnects for Resilient Data Communication and Acceleration in Energy-Efficient Chiplet-based Architectures
合作研究:SHF:中:EPIC:利用光子互连实现基于节能 Chiplet 的架构中的弹性数据通信和加速
  • 批准号:
    2311543
  • 财政年份:
    2023
  • 资助金额:
    $ 30.73万
  • 项目类别:
    Continuing Grant
Collaborative Research: DESC: Type II: Multi-Function Cross-Layer Electro-Optic Fabrics for Reliable and Sustainable Computing Systems
合作研究:DESC:II 型:用于可靠和可持续计算系统的多功能跨层电光织物
  • 批准号:
    2324644
  • 财政年份:
    2023
  • 资助金额:
    $ 30.73万
  • 项目类别:
    Standard Grant
Collaborative Research: CSR: Small: Cross-layer learning-based Energy-Efficient and Resilient NoC design for Multicore Systems
协作研究:CSR:小型:基于跨层学习的多核系统节能和弹性 NoC 设计
  • 批准号:
    2321224
  • 财政年份:
    2023
  • 资助金额:
    $ 30.73万
  • 项目类别:
    Standard Grant
SHF: Small: Holistic Design of High-performance and Energy-efficient Accelerators for Graph Neural Networks
SHF:小型:图神经网络高性能、高能效加速器的整体设计
  • 批准号:
    2131946
  • 财政年份:
    2021
  • 资助金额:
    $ 30.73万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Neural-Network-based Stochastic Computing Architectures with applications to Machine Learning
合作研究:SHF:中:基于神经网络的随机计算架构及其在机器学习中的应用
  • 批准号:
    1953980
  • 财政年份:
    2020
  • 资助金额:
    $ 30.73万
  • 项目类别:
    Continuing Grant
SHF: Medium: Collaborative Research: Photonic Neural Network Accelerators for Energy-efficient Heterogeneous Multicore Architectures
SHF:媒介:协作研究:用于节能异构多核架构的光子神经网络加速器
  • 批准号:
    1901165
  • 财政年份:
    2019
  • 资助金额:
    $ 30.73万
  • 项目类别:
    Continuing Grant
SHF: Small: Collaborative Research: Integrated Framework for System-Level Approximate Computing
SHF:小型:协作研究:系统级近似计算的集成框架
  • 批准号:
    1812495
  • 财政年份:
    2018
  • 资助金额:
    $ 30.73万
  • 项目类别:
    Standard Grant
SHF: Medium: Collaborative Research: Machine Learning Enabled Network-on-Chip Architectures Optimized for Energy, Performance and Reliability
SHF:中:协作研究:支持机器学习的片上网络架构,针对能源、性能和可靠性进行了优化
  • 批准号:
    1702980
  • 财政年份:
    2017
  • 资助金额:
    $ 30.73万
  • 项目类别:
    Continuing Grant
SHF: Small: Collaborative Research: Power-Efficient and Reliable 3D Stacked Reconfigurable Photonic Network-on-Chips for Scalable Multicore Architectures
SHF:小型:协作研究:用于可扩展多核架构的高效且可靠的 3D 堆叠可重构光子片上网络
  • 批准号:
    1547034
  • 财政年份:
    2015
  • 资助金额:
    $ 30.73万
  • 项目类别:
    Standard Grant
SHF: Medium: Collaborative Research: Scaling On-chip Networks to 1000-core Systems using Heterogeneous Emerging Interconnect Technologies
SHF:中:协作研究:使用异构新兴互连技术将片上网络扩展到 1000 核系统
  • 批准号:
    1513923
  • 财政年份:
    2015
  • 资助金额:
    $ 30.73万
  • 项目类别:
    Continuing Grant

相似国自然基金

近代东北南满铁路沿线工业城市的建设和技术传播
  • 批准号:
    52378030
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
薤白基于治疗“脘腹痞满胀痛”传统功效的抗胃癌药效物质基础与作用机制研究
  • 批准号:
    82374014
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于体内代谢产物“谱-量-效”3D分析的厚朴“下气除满”药效物质研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于GPR30对铁蓄积的调控作用研究蒙药那仁满都拉抗骨质疏松的效应及机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
内蒙古满都拉-阿巴嘎旗地区晚古生代构造体制转换期的沉积学响应研究
  • 批准号:
    42202239
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

XPS: FULL: CCA: Collaborative Research: Automatically Scalable Computation
XPS:完整:CCA:协作研究:自动可扩展计算
  • 批准号:
    1533663
  • 财政年份:
    2015
  • 资助金额:
    $ 30.73万
  • 项目类别:
    Standard Grant
XPS: FULL: CCA: Cymric: A Flexible Processor-Near-Memory System Architecture
XPS:完整:CCA:Cymric:灵活的处理器近内存系统架构
  • 批准号:
    1533767
  • 财政年份:
    2015
  • 资助金额:
    $ 30.73万
  • 项目类别:
    Standard Grant
XPS: FULL: CCA: Collaborative Research: Automatically Scalable Computation
XPS:完整:CCA:协作研究:自动可扩展计算
  • 批准号:
    1533737
  • 财政年份:
    2015
  • 资助金额:
    $ 30.73万
  • 项目类别:
    Standard Grant
XPS: FULL: CCA: NUMB: Exploiting Non-Uniform Memory Bandwidth for Computational Science
XPS:FULL:CCA:NUMB:利用非均匀内存带宽进行计算科学
  • 批准号:
    1533885
  • 财政年份:
    2015
  • 资助金额:
    $ 30.73万
  • 项目类别:
    Standard Grant
XPS: FULL: CCA: Collaborative Research: Automatically Scalable Computation
XPS:完整:CCA:协作研究:自动可扩展计算
  • 批准号:
    1438983
  • 财政年份:
    2014
  • 资助金额:
    $ 30.73万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了