Dissecting how protein degradation couples the circadian clock to downstream processes

剖析蛋白质降解如何将生物钟与下游过程结合起来

基本信息

  • 批准号:
    1548538
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

For most living organisms, specific biological processes must happen at specific times of day. For example, in plants, photosynthesis, the process that converts light energy and carbon dioxide into sugar, must be timed to daylight hours. Many additional important processes are parsed out by a mechanism that controls daily timing called the circadian clock. A lot is known about genes and proteins that make up the circadian clock in plants; however how the circadian clock actually controls particular biological processes such as photosynthesis is not known. This proposal outlines experiments that will discover connections between the circadian clock and some of these timed biological processes. Understanding these connections will help us make crop plants that produce more energy and are resistant to changes in the environment, such as those caused by global climate change. Much is known about the transcriptional connections between the circadian clock and downstream biological processes, but far fewer non-transcriptional connections have been made. One example is the coincidence model for seasonal flowering which exemplifies a protein degradation-based mechanism for coupling the clock to seasonal flowering. In this system a circadian clock-controlled F-box protein times the degradation of a key regulator of flowering. Beyond this example, there are 32 additional circadian clock-controlled F-box proteins with little or no known biological function. To fully understand the protein degradation-based couplings between the circadian clock and downstream processes, the functions of these F-box proteins must be understood. In this proposal a strategy is defined for inverting the function of the 32 circadian clock-controlled F-box proteins to study their functions. The completion of the experiments in this proposal will provide a critical toolset and dataset to investigate protein degradation-based coupling mechanisms between the circadian clock and downstream biological processes. In addition, the proposed research will promote training and scientific interaction at various levels of scientific discovery. 1) Undergraduates, graduate students, post-doctoral researchers, and visiting scholars will be trained in plant genetics, molecular biology, and biochemistry in the laboratory; 2) A monthly plant ?showcase? will continue to bring together the plant science faculty, students, and personnel at Yale with New Haven high school and middle school students to foster interest in plant biology and STEM education with young scientists; 3) The proposed work is intended for direct application to crop species and will be a powerful tool to introduce environmental plasticity in order to respond to global environment changes; and 4) Dissemination of the work to the general public will be achieved using social media. The lab maintains a Twitter account (@GendronLab) and the presentations of the plant showcase are published as podcasts that are freely downloadable (http://greencafe.yale.edu). This is intended to increase advocacy for science with a focus on plant science.
对于大多数活生物体,必须在一天中的特定时间发生特定的生物学过程。例如,在植物中,光合作用,将光能和二氧化碳转换为糖的过程必须定时与日光时间。通过控制每天的时机称为昼夜节律时钟的机制来解析许多其他重要过程。关于构成植物中昼夜节律的基因和蛋白质的了解很多。但是,昼夜节律如何实际控制特定的生物学过程,例如光合作用。该建议概述了实验,这些实验将发现昼夜节律之间的联系与其中一些定时的生物学过程之间的联系。了解这些联系将有助于我们制造产生更多能量并抵抗环境变化的作物植物,例如由全球气候变化引起的植物。关于昼夜节律与下游生物学过程之间的转录连接知之甚少,但是已经建立了更少的非转录连接。一个例子是季节性开花的巧合模型,例如,基于蛋白质降解的机制,用于将时钟耦合到季节性开花。在该系统中,昼夜节律控制的F-box蛋白质次降解了开花的关键调节剂。除此示例外,还有32个其他昼夜节律控制的F-box蛋白具有很少或没有已知的生物学功能。为了充分了解昼夜节律和下游过程之间基于蛋白质降解的耦合,必须了解这些F-box蛋白的功能。在此提案中,定义了一种策略,以颠倒32个昼夜节律控制的F-box蛋白来研究其功能。本提案中实验的完成将提供一个关键的工具集和数据集,以研究昼夜节律时钟和下游生物学过程之间基于蛋白质降解的耦合机制。 此外,拟议的研究将在科学发现的各个层面上促进培训和科学互动。 1)本科生,研究生,博士后研究人员和来访的学者将接受实验室的植物遗传学,分子生物学和生物化学的培训; 2)每月植物?将继续与纽黑文高中和中学生一起将植物科学教师,学生和人员与年轻科学家培养对植物生物学和STEM教育的兴趣; 3)拟议的工作旨在直接应用作物物种,将是引入环境可塑性以应对全球环境变化的强大工具; 4)将使用社交媒体将工作传播给公众。该实验室维护了一个Twitter帐户(@GendronLab),并且植物展示柜的演示文稿以可自由下载的播客(http://greencafe.yale.edu)出版。这旨在以植物科学为重点来增加对科学的倡导。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joshua Gendron其他文献

Joshua Gendron的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joshua Gendron', 18)}}的其他基金

Collaborative Research: Discovery of a negative feedback mechanism that controls karrikin and KAI2 ligand metabolism in plants
合作研究:发现植物中控制 karrikin 和 KAI2 配体代谢的负反馈机制
  • 批准号:
    1856452
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

最优化与权力如何共同影响社会“内卷”:基于认知过程模型的探讨
  • 批准号:
    32371124
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
如何应对日趋严重的职场物化?基于员工、组织和数智技术的干预措施研究
  • 批准号:
    72372012
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
电商平台个性化推荐信息如何影响消费者网购行为?基于田野实验的实证研究
  • 批准号:
    72302139
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
资本市场开放如何影响市场效率与系统性风险:基于ETF互联互通的准自然实验
  • 批准号:
    72302232
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
菌根栖息地之间的连接性如何影响生态系统的功能
  • 批准号:
    32371721
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Dissecting the mechanisms of how MYH7 S2 mutations lead to genetic hypertrophic cardiomyopathy
剖析MYH7 S2突变导致遗传性肥厚型心肌病的机制
  • 批准号:
    10463127
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
Dissecting the mechanisms of how MYH7 S2 mutations lead to genetic hypertrophic cardiomyopathy
剖析MYH7 S2突变导致遗传性肥厚型心肌病的机制
  • 批准号:
    10687810
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
Dissecting the mechanism of how dominant negative MYH7 mutations lead to genetic cardiomyopathies
剖析 MYH7 显性失活突变导致遗传性心肌病的机制
  • 批准号:
    10515348
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
Dissecting the mechanism of how dominant negative MYH7 mutations lead to genetic cardiomyopathies
剖析 MYH7 显性失活突变导致遗传性心肌病的机制
  • 批准号:
    10421247
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
Dissecting the mechanism of how dominant negative MYH7 mutations lead to genetic cardiomyopathies
剖析 MYH7 显性失活突变导致遗传性心肌病的机制
  • 批准号:
    10045499
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了