AitF: Full: Collaborative Research: Graph-theoretic algorithms to improve phylogenomic analyses

AitF:完整:协作研究:改进系统发育分析的图论算法

基本信息

  • 批准号:
    1535989
  • 负责人:
  • 金额:
    $ 36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

Understanding the history of life on earth ? how species evolved from their common ancestor ? is a major goal of biological research. These evolutionary trees are very hard to construct with high accuracy, because nearly all of the most accurate approaches require the solution to computationally hard optimization problems. Furthermore, research has shown that the evolutionary tree for a single gene can be different from the evolutionary tree for the species, and current methods do not provide adequate accuracy on genome-scale data. As a result, large evolutionary trees, covering big portions of ?The Tree of Life?, are very difficult to compute with high accuracy. This project will develop methods that can enable highly accurate species tree estimation. The key approach is the development of novel divide-and-conquer strategies, whereby a dataset is divided into overlapping subsets, species trees are constructed on the subsets, and then the subset species trees are merged together into a tree on the full dataset. These approaches will be combined with powerful statistical estimation methods, to potentially transform the capability of evolutionary biologists to analyze their data. This project will also provide open source software for the new methods that are developed, and provide training in the use of the software to biologists at national meetings. The project will also contribute to interdisciplinary training for two doctoral students, one at Illinois and one at Berkeley, and course materials for computational biology will be made available online. Understanding evolution, and how it has operated on species and on genes, is a major part of biological data analysis. Statistical estimation approaches often provide the best accuracy, but cannot scale to dataset sizes that are required for modern biology. In addition, species tree estimation is challenged by the heterogeneity of evolutionary trees across the genome, and no current methods are able to provide highly accurate species trees for genome-scale data. These challenges make it essential that new methods be developed in order to make highly accurate large-scale evolutionary tree estimation possible under these complex evolutionary scenarios. This project will develop novel algorithmic strategies to address three key problems: supertree estimation, species tree estimation in the presence of gene tree heterogeneity, and scaling statistical methods to large datasets. In addition to developing graph-theoretic algorithms, the project team will establish mathematical guarantees for these methods using chordal graph theory and probabilistic analysis, under stochastic models of gene and sequence evolution.
了解地球生命的历史?物种是如何从它们的共同祖先进化而来的?是生物学研究的一个主要目标。这些进化树很难以高精度构建,因为几乎所有最准确的方法都需要解决计算困难的优化问题。此外,研究表明,单个基因的进化树可能与物种的进化树不同,并且当前的方法不能提供足够的基因组规模数据准确性。因此,覆盖“生命之树”大部分的大型进化树很难高精度地计算。该项目将开发能够实现高度准确的物种树估计的方法。关键方法是开发新颖的分而治之策略,即将数据集划分为重叠的子集,在子集上构建物种树,然后将子集物种树合并到完整数据集上的树中。这些方法将与强大的统计估计方法相结合,有可能改变进化生物学家分析数据的能力。该项目还将为所开发的新方法提供开源软件,并在全国会议上向生物学家提供软件使用培训。该项目还将为两名博士生(一名在伊利诺伊州,一名在伯克利)提供跨学科培训,并且计算生物学的课程材料将在线提供。了解进化以及它如何作用于物种和基因,是生物数据分析的一个重要部分。统计估计方法通常提供最佳准确性,但无法扩展到现代生物学所需的数据集大小。此外,物种树估计受到基因组进化树异质性的挑战,目前没有方法能够为基因组规模的数据提供高度准确的物种树。这些挑战使得开发新方法至关重要,以便在这些复杂的进化场景下实现高精度的大规模进化树估计。 该项目将开发新颖的算法策略来解决三个关键问题:超级树估计、存在基因树异质性的物种树估计以及将统计方法扩展到大型数据集。除了开发图论算法之外,项目团队还将在基因和序列进化的随机模型下,使用弦图理论和概率分析为这些方法建立数学保证。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Satish Rao其他文献

Faster shortest-path algorithms for planar graphs
更快的平面图最短路径算法
  • DOI:
    10.1145/195058.195092
  • 发表时间:
    1994-05-23
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Klein;Satish Rao;Monika Henzinger;Sairam Subramanian
  • 通讯作者:
    Sairam Subramanian
Using Max Cut to Enhance Rooted Trees Consistency
使用 Max Cut 增强有根树的一致性
Molecular characterization and clinical significance of extraintestinal pathogenic Escherichia coli recovered from a south Indian tertiary care hospital.
从印度南部三级护理医院回收的肠外致病性大肠杆菌的分子特征和临床意义。
  • DOI:
    10.1016/j.micpath.2016.03.001
  • 发表时间:
    2016-06-01
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Arindam Chakraborty;P. Adhikari;S. Shenoy;Satish Rao;B. Dhanashree;V. Saralaya
  • 通讯作者:
    V. Saralaya
What Would Edmonds Do? Augmenting Paths and Witnesses for Degree-Bounded MSTs
埃德蒙兹会做什么?
  • DOI:
    10.1007/s00453-007-9115-5
  • 发表时间:
    2009-05-22
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Kamalika Chaudhuri;Satish Rao;Samantha J. Riesenfeld;Kunal Talwar
  • 通讯作者:
    Kunal Talwar
A rigorous analysis of population stratification with limited data
用有限的数据对人口分层进行严格分析
  • DOI:
  • 发表时间:
    2007-01-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kamalika Chaudhuri;E. Halperin;Satish Rao;Shuheng Zhou
  • 通讯作者:
    Shuheng Zhou

Satish Rao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Satish Rao', 18)}}的其他基金

AF: Small: Algorithms March on through Continuous and Combinatorial Methods
AF:小:算法通过连续和组合方法前进
  • 批准号:
    1816861
  • 财政年份:
    2018
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
AF: Small: Algorithms: approximate, combinatorial, and continuous.
AF:小:算法:近似、组合和连续。
  • 批准号:
    1528174
  • 财政年份:
    2015
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
AF: Small: Algorithms: Linear, Spectral, and Approximation.
AF:小:算法:线性、谱和近似。
  • 批准号:
    1118083
  • 财政年份:
    2011
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Geometric Network Analysis Tools: Algorithmic Methods for Identifying Structure in Large Informatics Graphs
III:媒介:协作研究:几何网络分析工具:识别大型信息学图中结构的算法方法
  • 批准号:
    0963904
  • 财政年份:
    2010
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Explorations in Algorithms
算法探索
  • 批准号:
    0830797
  • 财政年份:
    2008
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Collaborative Research: Spectral Graph Theory and Its Applications
合作研究:谱图理论及其应用
  • 批准号:
    0635357
  • 财政年份:
    2007
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Metric embeddings, approximation and combinatorial algorithms.
度量嵌入、近似和组合算法。
  • 批准号:
    0515304
  • 财政年份:
    2005
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Information Technology Research (ITR): Building the Tree of Life -- A National Resource for Phyloinformatics and Computational Phylogenetics
信息技术研究(ITR):构建生命之树——系统信息学和计算系统发育学的国家资源
  • 批准号:
    0331494
  • 财政年份:
    2003
  • 资助金额:
    $ 36万
  • 项目类别:
    Cooperative Agreement
Network Algorithms: Scheduling and Routing
网络算法:调度和路由
  • 批准号:
    0105533
  • 财政年份:
    2001
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant

相似国自然基金

近代东北南满铁路沿线工业城市的建设和技术传播
  • 批准号:
    52378030
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
薤白基于治疗“脘腹痞满胀痛”传统功效的抗胃癌药效物质基础与作用机制研究
  • 批准号:
    82374014
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于体内代谢产物“谱-量-效”3D分析的厚朴“下气除满”药效物质研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于GPR30对铁蓄积的调控作用研究蒙药那仁满都拉抗骨质疏松的效应及机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
内蒙古满都拉-阿巴嘎旗地区晚古生代构造体制转换期的沉积学响应研究
  • 批准号:
    42202239
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

AitF: FULL: Collaborative Research: PEARL: Perceptual Adaptive Representation Learning in the Wild
AitF:FULL:协作研究:PEARL:野外感知自适应表示学习
  • 批准号:
    1723379
  • 财政年份:
    2016
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
AitF: FULL: Collaborative Research: Provably Efficient GPU Algorithms
AitF:完整:协作研究:可证明高效的 GPU 算法
  • 批准号:
    1533564
  • 财政年份:
    2015
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
AitF: FULL: Collaborative Research: Better Hashing for Applications: From Nuts & Bolts to Asymptotics
AitF:完整:协作研究:更好的应用程序哈希:来自坚果
  • 批准号:
    1535821
  • 财政年份:
    2015
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
AitF: FULL: Collaborative Research: PEARL: Perceptual Adaptive Representation Learning in the Wild
AitF:FULL:协作研究:PEARL:野外感知自适应表示学习
  • 批准号:
    1535987
  • 财政年份:
    2015
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
AitF: FULL: Collaborative Research: PEARL: Perceptual Adaptive Representation Learning in the Wild
AitF:FULL:协作研究:PEARL:野外感知自适应表示学习
  • 批准号:
    1535797
  • 财政年份:
    2015
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了