BRAIN EAGER: Using Optogenetic Techniques in Combination with Free Flight Perturbations to Elucidate Neural Structure Governing Flight Control in D. Melanogaster

BRAIN EAGER:利用光遗传学技术结合自由飞行扰动来阐明黑腹果蝇控制飞行控制的神经结构

基本信息

  • 批准号:
    1546710
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

Forging the link between individual neuron function and the behavior of collections of neurons that can produce complex behaviors is the central goal of contemporary neuroscience. The path towards achieving this goal is being revolutionized by genetic techniques that allow for manipulation of the activity of neurons and measurement of the effect on behavior. Flight behavior in the fruit fly, Drosophila, is highly suitable for this combined analysis, since flies can be genetically manipulated very easily and their rich set of free flight behaviors can be quantitatively characterized in great detail. This project will use this approach to unravel the design and operation of a remarkable neural circuit responsible for giving flies one of the fastest response times in the animal kingdom and controlling their high speed maneuvering capabilities. Using small magnets attached to the flies and applied magnetic fields, flies will be subjected to forces in midair that alter their flight. By turning on and off the neurons in the control circuit that governs their response to such forces and determining the resulting change in their wing motions, the role that each individual neuron plays in the neural circuit that governs the recovery of these insects to the experimental perturbation will be determined. More broadly this work will lay the framework for a general powerful approach for interrogating and building an understanding of many other complex neural circuits. Moreover, the discoveries made will inform design principles for the development of efficient control strategies that can be used in robots. This pipeline for discovery will be publicized through conference meetings, publications, and workshops. In addition, the analysis routines and resulting data will be made available through the Principal Investigator's group web site. The flight of fruit flies (Drosophila) provides a rich set of free flight behaviors that can be quantitatively characterized in great detail using methods recently developed by the PI. Towards this end, this project will develop a platform in which each neuron in this circuit can be manipulated using optogenetics and the altered behavioral response quantified, with the aim of dissecting with unprecedented detail a behaviorally vital yet poorly understood neural circuit. Crucially, the approach taken entails using large empirical data sets of flight kinematics in conjunction with the mathematical theory of dynamical systems to generate reduced order models. These models will be used to guide the experiment design and interpretation of the resulting kinematic data. Application of this approach to motor-neurons will be used to elucidate the role of specific steering muscles in the flight control process. Application of this approach to the inter-neurons, which relay sensory responses to the motor-neurons, is being used to elucidate the design and function of the neural control circuit that determines the fly's response to mid-air perturbations. More broadly the complexity and hierarchical layout of the machinery necessary for insect flight is typical of other complex neural circuits.
建立单个神经元功能与可以产生复杂行为的神经元集合的行为之间的联系是当代神经科学的中心目标。基因技术正在彻底改变实现这一目标的道路,这些技术允许操纵神经元的活动并测量对行为的影响。果蝇的飞行行为非常适合这种组合分析,因为果蝇可以非常容易地进行基因操纵,并且可以非常详细地定量描述它们丰富的自由飞行行为。该项目将利用这种方法来揭示一个非凡的神经回路的设计和操作,该神经回路负责为果蝇提供动物王国中最快的响应时间之一,并控制它们的高速机动能力。使用附着在苍蝇上的小磁铁并施加磁场,苍蝇将受到半空中的力,从而改变它们的飞行。通过打开和关闭控制电路中的神经元来控制它们对这种力的反应,并确定由此产生的翅膀运动的变化,每个单独的神经元在控制这些昆虫对实验扰动的恢复的神经电路中所扮演的角色将被确定。更广泛地说,这项工作将为询问和建立对许多其他复杂神经回路的理解的通用强大方法奠定框架。此外,所取得的发现将为开发可用于机器人的高效控制策略的设计原则提供信息。该发现渠道将通过会议、出版物和研讨会进行宣传。此外,分析程序和结果数据将通过首席研究员的小组网站提供。 果蝇(果蝇)的飞行提供了一系列丰富的自由飞行行为,可以使用 PI 最近开发的方法对其进行详细的定量表征。为此,该项目将开发一个平台,可以使用光遗传学来操纵该回路中的每个神经元,并对改变的行为反应进行量化,目的是以前所未有的细节剖析一个行为重要但知之甚少的神经回路。至关重要的是,所采用的方法需要使用飞行运动学的大型经验数据集结合动力系统的数学理论来生成降阶模型。这些模型将用于指导实验设计和对所得运动学数据的解释。这种方法对运动神经元的应用将用于阐明特定转向肌肉在飞行控制过程中的作用。这种方法应用于将感觉反应传递给运动神经元的中间神经元,用于阐明决定果蝇对空中扰动的反应的神经控制电路的设计和功能。 更广泛地说,昆虫飞行所需的机器的复杂性和分层布局是其他复杂神经回路的典型特征。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Itai Cohen其他文献

Audio cues enhance mirroring of arm motion when visual cues are scarce
当视觉线索稀缺时,音频线索可以增强手臂运动的镜像
Extending the Use of Information Theory in Segregation Analyses to Construct Comprehensive Models of Segregation
扩展信息论在分离分析中的应用,构建综合的分离模型
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Boris Barron;Yunus A. Kinkhabwala;Chris Hess;Matthew Hall;Itai Cohen;T. Arias
  • 通讯作者:
    T. Arias
Overcoming obstacles to experiments in legal practice
克服法律实践中的实验障碍
  • DOI:
    10.1126/science.aay3005
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    56.9
  • 作者:
    H. F. Lynch;D. Greiner;Itai Cohen
  • 通讯作者:
    Itai Cohen
Small-area Population Forecast in a Segregated City using Density-Functional Fluctuation Theory
使用密度函数涨落理论对隔离城市的小区域人口进行预测
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuchao Chen;Yunus A. Kinkhabwala;Boris Barron;Matthew Hall;T. Arias;Itai Cohen
  • 通讯作者:
    Itai Cohen

Itai Cohen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Itai Cohen', 18)}}的其他基金

Emergent Behaviors of Dense Active Suspensions Under Shear
剪切下致密主动悬架的突现行为
  • 批准号:
    2327094
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Using bidirectional shear protocols to determine microstructural changes responsible for thickening and dethickening in colloidal suspensions
使用双向剪切方案确定导致胶体悬浮液增稠和减稠的微观结构变化
  • 批准号:
    2010118
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EFRI C3 SoRo: Micron-scale Morphing Soft-Robots for Interfacing With Biological Systems
EFRI C3 SoRo:用于与生物系统连接的微米级变形软机器人
  • 批准号:
    1935252
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
DMREF: Collaborative Research: Digital Magnetic Handshake Materials, Structures, and Machines
DMREF:合作研究:数字磁握手材料、结构和机器
  • 批准号:
    1921567
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Decoding and encoding mechanistic relations between structure and function in crack resistance of articular cartilage and cartilage inspired biomaterials.
合作研究:解码和编码关节软骨和软骨启发生物材料的抗裂结构和功能之间的机械关系。
  • 批准号:
    1807602
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
New paradigms for relating the microstructure of cartilage to its large scale mechanics: The Roles of Rigidity-Percolation and Double Gel Network Structure in Non-Linear Response
将软骨微观结构与其大规模力学联系起来的新范例:刚性渗透和双凝胶网络结构在非线性响应中的作用
  • 批准号:
    1536463
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Imaging Local Stress Anisotropy and Determining Its Role in Driving Defect Mobility in Crystals
局部应力各向异性成像并确定其在驱动晶体缺陷迁移率中的作用
  • 批准号:
    1507607
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
UNS: Imaging inhomogeneous stress networks in colloidal glasses and gels to determine their role in the bulk response of disordered suspensions
UNS:对胶体玻璃和凝胶中的不均匀应力网络进行成像,以确定它们在无序悬浮液的整体响应中的作用
  • 批准号:
    1509308
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Using confocal rheometry to investigate shear thickening suspensions
使用共焦流变测量法研究剪切增稠悬浮液
  • 批准号:
    1232666
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Using Colloidal Suspensions to Investigate the Role of Particle Dynamics in Heteroepitaxy and Melting
职业:利用胶体悬浮液研究粒子动力学在异质外延和熔化中的作用
  • 批准号:
    1056662
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似国自然基金

渴望及其对农村居民收入差距的影响研究
  • 批准号:
    71903117
  • 批准年份:
    2019
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
威胁应对视角下的消费者触摸渴望及其补偿机制研究
  • 批准号:
    71502075
  • 批准年份:
    2015
  • 资助金额:
    17.5 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

EAGER: Modifying human cognition using targeted non-invasive stimulation of large-scale brain networks
EAGER:利用大规模大脑网络的有针对性的非侵入性刺激来改变人类认知
  • 批准号:
    1753677
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
BRAIN EAGER: Solving the Code of Olfaction Using Nano-Robot Switchable Odorants
BRAIN EAGER:使用纳米机器人可切换气味剂解决嗅觉密码
  • 批准号:
    1450993
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
BRAIN EAGER: Wireless Measurement of Neuronal Currents Using Spin-Torque Nano-Oscillators
BRAIN EAGER:使用自旋扭矩纳米振荡器无线测量神经元电流
  • 批准号:
    1450921
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
BRAIN EAGER:The Virtual Neuroanatomist: Using Machine Intelligence to Study Intelligent Machines
BRAIN EAGER:虚拟神经解剖学家:利用机器智能研究智能机器
  • 批准号:
    1450957
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Brain Responses to Visual Stimuli in Sharks Using Functional Magnetic Resonance Imaging (FMRI)
EAGER:使用功能磁共振成像 (FMRI) 观察鲨鱼的大脑对视觉刺激的反应
  • 批准号:
    1143389
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了