DMREF: Collaborative Research: Digital Magnetic Handshake Materials, Structures, and Machines

DMREF:合作研究:数字磁握手材料、结构和机器

基本信息

  • 批准号:
    1921567
  • 负责人:
  • 金额:
    $ 111.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

Non-technical Description: Manufacturing of complex objects is the key engine of technological progress. Learning to build smart, digital, and mechanically functional objects at the microscale could be as revolutionary as human-scale manufacturing. This grant will support research to develop a new way of meeting this challenging goal. It combines two technologies: modern magnetic information storage, which can create tiny magnets in any pattern desired, and ultrathin flexible materials that can bend in response to tiny forces. These will be combined with the design principles of colloidal systems, polymer physics, and molecular biology to create intelligent, functional objects, machines, and materials. The pieces will interact in a way analogous to the way DNA bases bind together, with magnets playing the role of the base pairs, and the thin materials playing the role of the DNA backbone. The magnetic information will determine how multiple strands connect and form complex structures and micron sized machines that can be controlled with external magnetic fields. These materials will ultimately have fundamental impacts on micro-engineering, with a range of potential applications, from materials to medicine. As such, this research will promote the progress of science and ultimately benefit the US economy and society. This research borrows concepts from a variety of fields - a multi-disciplinary approach that will help broaden participation of underrepresented groups in research and positively impact engineering and science education. For example, macroscopic analogs will be adopted into lending kits that will be used to explain the basic principles behind base paring in DNA and its assembly into DNA origami structures to impoverished communities in upper Appalachia. Technical Description: This grant will support research aimed at building a new platform for self-assembly that uses panels with magnetic handshakes - microscopic patterns of magnetic dipoles - that enable panels to bond together using specific, intelligent interactions analogous to Watson-Crick base pairs in DNA. By fabricating these panels on nm thin elastic strands grown via atomic layer deposition, the panel sequence will determine how multiple strands connect to one another and form complex untethered structures and micron sized machines that can be manipulated with external magnetic fields. These handshake panels will be programmed using either magneto-optic recording (micron scale) or commercial scanned magnetic write head (50 nm scale). The resulting magnetic colloids, strands, or nets will be released from the substrate into solution, and allowed to bend, move, and assemble according to their designed interactions. The approach of the grant is to integrate design, macroscale models, advanced simulations, and experiment, to master the programmed self-assembly of these magnetic handshake materials. Overall, this strategy both takes advantage of the complementary binding principle behind current state of the art 3D DNA based assembly and overcomes many of its limitations, including vastly expanding the range of operating parameters such as temperature, solvent, etc. The resulting structures can be fully integrated with other lithographic elements (electronics, optics, etc.) and will have broad applications in sensing, actuation, and microrobotics at the cellular scale.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:复杂物体的制造是技术进步的关键引擎。学习在微观尺度上构建智能,数字和机械功能的对象可能与人类规模的制造一样革命性。该赠款将支持研究,以开发一种实现这一挑战目标的新方法。它结合了两种技术:现代磁性信息存储,它们可以以任何所需的模式创建微小的磁铁,以及可以响应微小力而弯曲的超薄柔性材料。这些将与胶体系统,聚合物物理学和分子生物学的设计原理结合使用,以创建智能,功能性的对象,机器和材料。这些碎片的相互作用将类似于DNA碱基结合在一起的方式,磁体起着碱基对的作用,而薄材料则扮演了DNA骨架的作用。磁性信息将确定如何连接并形成可以用外部磁场控制的复杂结构和微米大小的机器。这些材料最终将对从材料到医学的微工程以及一系列潜在应用产生根本性的影响。因此,这项研究将促进科学的进步,并最终使美国经济和社会受益。这项研究借鉴了各个领域的概念 - 一种多学科的方法,将有助于扩大代表性不足的群体参与研究的参与,并积极影响工程和科学教育。例如,宏观类似物将用于贷款套件中,这些试剂套件将用于解释DNA中的基本削减背后的基本原理,并将其组装到DNA折纸结构中,以使阿巴拉契亚上层的社区贫穷。 技术描述:该赠款将支持旨在建立一个新的自组装平台的研究,该研究使用带有磁性握手的面板 - 磁性偶极子的显微镜模式 - 使面板可以使用类似于Watson -Crick Base对的特定的,智能的相互作用将面板结合在一起脱氧核糖核酸。通过在通过原子层沉积生长的NM薄弹性链上制造这些面板,面板序列将确定多链如何相互连接,并形成可以用外部磁场来操纵的复杂的不受束缚的结构和微米大小的机器。这些握手面板将使用磁磁记录(微米尺度)或商业扫描磁性写头(50 nm比例)进行编程。所得的磁胶体,链或网将从基板释放到溶液中,并允许根据其设计的相互作用弯曲,移动和组装。赠款的方法是整合设计,宏观模型,高级模拟和实验,以掌握这些磁性握手材料的编程自组装。总体而言,该策略都利用了当前最先进的基于3D DNA组装的互补结合原理,并克服了许多局限与其他光刻元素(电子,光学等)充分整合,并将在蜂窝尺度上在感应,驱动和微型机构方面广泛应用。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子进行评估的支持。优点和更广泛的影响审查标准。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bifurcation instructed design of multistate machines
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Itai Cohen其他文献

Audio cues enhance mirroring of arm motion when visual cues are scarce
当视觉线索稀缺时,音频线索可以增强手臂运动的镜像
Extending the Use of Information Theory in Segregation Analyses to Construct Comprehensive Models of Segregation
扩展信息论在分离分析中的应用,构建综合的分离模型
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Boris Barron;Yunus A. Kinkhabwala;Chris Hess;Matthew Hall;Itai Cohen;T. Arias
  • 通讯作者:
    T. Arias
Overcoming obstacles to experiments in legal practice
克服法律实践中的实验障碍
  • DOI:
    10.1126/science.aay3005
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    56.9
  • 作者:
    H. F. Lynch;D. Greiner;Itai Cohen
  • 通讯作者:
    Itai Cohen
Small-area Population Forecast in a Segregated City using Density-Functional Fluctuation Theory
使用密度函数涨落理论对隔离城市的小区域人口进行预测
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuchao Chen;Yunus A. Kinkhabwala;Boris Barron;Matthew Hall;T. Arias;Itai Cohen
  • 通讯作者:
    Itai Cohen

Itai Cohen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Itai Cohen', 18)}}的其他基金

Emergent Behaviors of Dense Active Suspensions Under Shear
剪切下致密主动悬架的突现行为
  • 批准号:
    2327094
  • 财政年份:
    2024
  • 资助金额:
    $ 111.06万
  • 项目类别:
    Standard Grant
Using bidirectional shear protocols to determine microstructural changes responsible for thickening and dethickening in colloidal suspensions
使用双向剪切方案确定导致胶体悬浮液增稠和减稠的微观结构变化
  • 批准号:
    2010118
  • 财政年份:
    2020
  • 资助金额:
    $ 111.06万
  • 项目类别:
    Standard Grant
EFRI C3 SoRo: Micron-scale Morphing Soft-Robots for Interfacing With Biological Systems
EFRI C3 SoRo:用于与生物系统连接的微米级变形软机器人
  • 批准号:
    1935252
  • 财政年份:
    2019
  • 资助金额:
    $ 111.06万
  • 项目类别:
    Standard Grant
Collaborative Research: Decoding and encoding mechanistic relations between structure and function in crack resistance of articular cartilage and cartilage inspired biomaterials.
合作研究:解码和编码关节软骨和软骨启发生物材料的抗裂结构和功能之间的机械关系。
  • 批准号:
    1807602
  • 财政年份:
    2018
  • 资助金额:
    $ 111.06万
  • 项目类别:
    Continuing Grant
New paradigms for relating the microstructure of cartilage to its large scale mechanics: The Roles of Rigidity-Percolation and Double Gel Network Structure in Non-Linear Response
将软骨微观结构与其大规模力学联系起来的新范例:刚性渗透和双凝胶网络结构在非线性响应中的作用
  • 批准号:
    1536463
  • 财政年份:
    2015
  • 资助金额:
    $ 111.06万
  • 项目类别:
    Standard Grant
Imaging Local Stress Anisotropy and Determining Its Role in Driving Defect Mobility in Crystals
局部应力各向异性成像并确定其在驱动晶体缺陷迁移率中的作用
  • 批准号:
    1507607
  • 财政年份:
    2015
  • 资助金额:
    $ 111.06万
  • 项目类别:
    Standard Grant
BRAIN EAGER: Using Optogenetic Techniques in Combination with Free Flight Perturbations to Elucidate Neural Structure Governing Flight Control in D. Melanogaster
BRAIN EAGER:利用光遗传学技术结合自由飞行扰动来阐明黑腹果蝇控制飞行控制的神经结构
  • 批准号:
    1546710
  • 财政年份:
    2015
  • 资助金额:
    $ 111.06万
  • 项目类别:
    Standard Grant
UNS: Imaging inhomogeneous stress networks in colloidal glasses and gels to determine their role in the bulk response of disordered suspensions
UNS:对胶体玻璃和凝胶中的不均匀应力网络进行成像,以确定它们在无序悬浮液的整体响应中的作用
  • 批准号:
    1509308
  • 财政年份:
    2015
  • 资助金额:
    $ 111.06万
  • 项目类别:
    Standard Grant
Using confocal rheometry to investigate shear thickening suspensions
使用共焦流变测量法研究剪切增稠悬浮液
  • 批准号:
    1232666
  • 财政年份:
    2012
  • 资助金额:
    $ 111.06万
  • 项目类别:
    Standard Grant
CAREER: Using Colloidal Suspensions to Investigate the Role of Particle Dynamics in Heteroepitaxy and Melting
职业:利用胶体悬浮液研究粒子动力学在异质外延和熔化中的作用
  • 批准号:
    1056662
  • 财政年份:
    2011
  • 资助金额:
    $ 111.06万
  • 项目类别:
    Continuing Grant

相似国自然基金

数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
  • 批准号:
    72372084
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
颅颌面手术机器人辅助半面短小牵张成骨术的智能规划与交互协作研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
面向自主认知与群智协作的多智能体制造系统关键技术研究
  • 批准号:
    52305539
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大规模物联网多协作绿色信息感知和智慧响应决策一体化方法研究
  • 批准号:
    62371149
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
多UAV协作的大规模传感网并发充电模型及其服务机制研究
  • 批准号:
    62362017
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 111.06万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 111.06万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 111.06万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
  • 批准号:
    2323458
  • 财政年份:
    2023
  • 资助金额:
    $ 111.06万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 111.06万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了