Collaborative Research: Zeolite Thin Films as Efficient and Robust Ion Exchange Membranes in Redox Flow Batteries for Renewable Energy Storage

合作研究:沸石薄膜作为可再生能源存储氧化还原液流电池中高效且坚固的离子交换膜

基本信息

  • 批准号:
    1545560
  • 负责人:
  • 金额:
    $ 20.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

1263860 / 1263707 Dong, Junhang / Murad, SohailThe lack of economical and efficient energy storage devices is one of the major hurdles to the widespread utilization of renewable solar and wind energy. The redox flow battery (RFB) is an attractive option because of its excellent safety, high capacity, high efficiency, modularity, and small environmental footprint; however, in its current development state it is not commercially viable largely because of inefficiencies in the ion exchange membrane (IEM), which is a key factor determining its cost effectiveness, energy efficiency, and battery lifetime. Research and development efforts on IEMs for RFBs have largely focused on polymer-based materials. These materials have fundamental deficiencies, associated with their polymeric nature, related to ion crossover and chemical instability in high concentration electrolyte solutions of RFBs; therefore, alternative IEMs fabricated from new materials are required. The goal of this project is to explore nanoporous zeolite thin films as a new class of highly efficient and durable IEMs for RFBs. A key objective is to understand the mechanisms of proton conduction and field-driven ion transport in the zeolite membranes. The research will primarily focus on the siliceous MFI-type zeolite membranes for two model RFB systems including the Fe/Cr RFB and the all-vanadium RFB. The specific objectives include: (i) synthesizing MFI zeolite membranes with different thickness, orientation, and framework composition and investigating the effects of these structural and chemical properties on the membrane performance in RFBs; (ii) experimentally studying the transport properties for proton and relevant metal ions with and without applied electric fields; and (iii) performing molecular simulations of the electrical-field-driven and chemical-potential-gradient-driven ion transport processes. Zeolite membrane transport is governed by the field-driven diffusion of ?hydrated protons? in essentially non-ionic subnanometer zeolitic channels and is fundamentally different from the proton hopping process in the hydrated ionic polymers. This research will employ nanoporous inorganic membranes, particularly the crystalline zeolite membranes, as a new generation of highly efficient and robust IEMs for RFBs. The project will advance fundamental knowledge on ion transport in the zeolite membranes through synergistic efforts involving experimental studies and molecular dynamics simulations. Simulations will guide efforts to determine the most promising membrane structural and chemical properties. Broader Impacts: If successful, this research may guide the design of storage devices for intermittent energy from renewable sources. The membranes developed will also have potential applications energy production and environmental protection. A more complete fundamental understanding of the electrical field-driven ion transport mechanism in zeolitic nanopores will be a significant contribution to membrane science. The project involves experimental and theoretical studies that will provide opportunities for graduate and undergraduate students. Plans have been made to incorporate the research findings into existing courses and to include undergraduate participation from diverse academic and ethnic backgrounds. Both PIs have outreach activities involving high school students and undergraduate students through research projects and presentations at seminars.
1263860 / 1263707 Dong, Junhang / Murad, Sohail 缺乏经济高效的储能装置是可再生太阳能和风能广泛利用的主要障碍之一。氧化还原液流电池(RFB)因其出色的安全性、高容量、高效率、模块化和环境足迹小而成为一种有吸引力的选择;然而,在目前的开发状态下,它在商业上不可行,主要是因为离子交换膜(IEM)效率低下,而离子交换膜是决定其成本效益、能源效率和电池寿命的关键因素。 RFB 的 IEM 的研究和开发工作主要集中在聚合物材料上。这些材料具有与其聚合性质有关的根本缺陷,与 RFB 高浓度电解质溶液中的离子交叉和化学不稳定性有关;因此,需要采用新材料制造的替代入耳式耳机。该项目的目标是探索纳米多孔沸石薄膜作为一种新型高效耐用的 RFB IEM。 一个关键目标是了解沸石膜中质子传导和场驱动离子传输的机制。该研究将主要集中在两种模型 RFB 系统(包括 Fe/Cr RFB 和全钒 RFB)的硅质 MFI 型沸石膜上。具体目标包括:(i)合成具有不同厚度、取向和骨架组成的MFI沸石膜,并研究这些结构和化学性质对RFB中膜性能的影响; (ii) 实验研究在施加和不施加电场的情况下质子和相关金属离子的输运特性; (iii) 对电场驱动和化学势梯度驱动的离子传输过程进行分子模拟。沸石膜传输由“水合质子”的场驱动扩散控制。本质上是非离子亚纳米沸石通道中的质子跳跃过程,与水合离子聚合物中的质子跳跃过程根本不同。 这项研究将采用纳米多孔无机膜,特别是结晶沸石膜,作为新一代高效、坚固的 RFB IEM。该项目将通过实验研究和分子动力学模拟的协同努力,推进沸石膜中离子传输的基础知识。 模拟将指导确定最有前途的膜结构和化学特性的工作。更广泛的影响:如果成功,这项研究可能会指导可再生能源间歇性能源存储设备的设计。 所开发的膜还将在能源生产和环境保护方面具有潜在的应用。对沸石纳米孔中电场驱动的离子传输机制的更完整的基本理解将对膜科学做出重大贡献。该项目涉及实验和理论研究,将为研究生和本科生提供机会。 已制定计划将研究结果纳入现有课程,并让来自不同学术和种族背景的本科生参与其中。 两位 PI 都通过研究项目和研讨会演讲开展了涉及高中生和本科生的外展活动。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On using the anisotropy in the thermal resistance of solid–fluid interfaces to more effectively cool nano-electronics
  • DOI:
    10.1080/08927022.2019.1684488
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Xiaoyu Wang;D. Venerus;I. Puri;S. Murad
  • 通讯作者:
    Xiaoyu Wang;D. Venerus;I. Puri;S. Murad
Computational Molecular Modeling of Transport Processes in Nanoporous Membranes
  • DOI:
    10.3390/pr6080124
  • 发表时间:
    2018-08-01
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Hinkle, Kevin R.;Wang, Xiaoyu;Murad, Sohail
  • 通讯作者:
    Murad, Sohail
Understanding the effect of zeolite crystal expansion/contraction on separation performance of NaA zeolite membrane: A combined experimental and molecular simulation study
  • DOI:
    10.1016/j.memsci.2017.05.057
  • 发表时间:
    2017-10-01
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Qu, Fanyu;Shi, Rui;Murad, Sohail
  • 通讯作者:
    Murad, Sohail
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sohail Murad其他文献

Sohail Murad的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sohail Murad', 18)}}的其他基金

Collaborative Research: Zeolite Thin Films as Efficient and Robust Ion Exchange Membranes in Redox Flow Batteries for Renewable Energy Storage
合作研究:沸石薄膜作为可再生能源存储氧化还原液流电池中高效且坚固的离子交换膜
  • 批准号:
    1263707
  • 财政年份:
    2013
  • 资助金额:
    $ 20.87万
  • 项目类别:
    Continuing Grant
Collaborative Research: EAGER: A Proof of Concept Study to Demonstrate Tunable Thermal Rectification in Liquids
合作研究:EAGER:演示液体中可调谐热整流的概念验证研究
  • 批准号:
    1246536
  • 财政年份:
    2012
  • 资助金额:
    $ 20.87万
  • 项目类别:
    Standard Grant
GILEE: Establishing a Graduate Interdisciplinary Liberal Engineering Ethics Curriculum
GILEE:建立研究生跨学科自由工程伦理课程
  • 批准号:
    0832738
  • 财政年份:
    2008
  • 资助金额:
    $ 20.87万
  • 项目类别:
    Standard Grant
Molecular Modeling of Ion Transport and Separation in Nanochannels
纳米通道中离子传输和分离的分子模型
  • 批准号:
    0730026
  • 财政年份:
    2007
  • 资助金额:
    $ 20.87万
  • 项目类别:
    Continuing Grant
GOALI: Molecular Dynamics Simulations of Membrane Assisted Phase Equilibrium in Dilute Solutions
GOALI:稀溶液中膜辅助相平衡的分子动力学模拟
  • 批准号:
    0314023
  • 财政年份:
    2003
  • 资助金额:
    $ 20.87万
  • 项目类别:
    Continuing Grant
US-India Cooperative Research: Phase Transitions in Confined Aqueous Environments
美印合作研究:密闭水环境中的相变
  • 批准号:
    0242921
  • 财政年份:
    2003
  • 资助金额:
    $ 20.87万
  • 项目类别:
    Standard Grant
U.S.-Spain Cooperative Research: Molecular Simulations of Nanomembranes
美国-西班牙合作研究:纳米膜的分子模拟
  • 批准号:
    9813423
  • 财政年份:
    1999
  • 资助金额:
    $ 20.87万
  • 项目类别:
    Standard Grant
SGER: Computer Simulation of Electro-Osmosis in Solutions
SGER:溶液中电渗透的计算机模拟
  • 批准号:
    9617405
  • 财政年份:
    1996
  • 资助金额:
    $ 20.87万
  • 项目类别:
    Standard Grant
U.S.-U.K. Cooperative Research: Computer Simulation of Fluids With Restricted Flow Geometrics
美英合作研究:具有受限流动几何形状的流体的计算机模拟
  • 批准号:
    9123242
  • 财政年份:
    1992
  • 资助金额:
    $ 20.87万
  • 项目类别:
    Standard Grant
Computer Simulation of Fluids, U.S.-Pakistan Collaboration
流体计算机模拟,美国-巴基斯坦合作
  • 批准号:
    9117025
  • 财政年份:
    1992
  • 资助金额:
    $ 20.87万
  • 项目类别:
    Standard Grant

相似国自然基金

基于微波耦合沸石分子筛的有机固废热解产物定向调控机制研究
  • 批准号:
    22373035
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
多级孔炭沸石催化剂可控构筑及其复杂VOCs催化氧化性能研究
  • 批准号:
    52370116
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
衍射技术应用于新型晶态沸石分子筛材料的可控制备与结构研究
  • 批准号:
    22371121
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
高放废物地质处置库塔木素泥岩预选地段围岩中方沸石成因矿物学研究
  • 批准号:
    42302044
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向高效乙烷/乙烯反转分离的沸石型MOFs材料的设计合成与性能研究
  • 批准号:
    52373212
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

DMREF: Collaborative Research: GOALI: Multiscale Design of Zeolite Sites for Precise Catalytic Transformations
DMREF:合作研究:GOALI:用于精确催化转化的沸石位点多尺度设计
  • 批准号:
    1922173
  • 财政年份:
    2019
  • 资助金额:
    $ 20.87万
  • 项目类别:
    Standard Grant
DMREF: Collaborative Research: GOALI: Multiscale Design of Zeolite Sites for Precise Catalytic Transformations
DMREF:合作研究:GOALI:用于精确催化转化的沸石位点多尺度设计
  • 批准号:
    1922154
  • 财政年份:
    2019
  • 资助金额:
    $ 20.87万
  • 项目类别:
    Continuing Grant
Collaborative Research: High-performance water purification membranes made of 2D zeolite nanosheets
合作研究:二维沸石纳米片制成的高性能水净化膜
  • 批准号:
    1705284
  • 财政年份:
    2017
  • 资助金额:
    $ 20.87万
  • 项目类别:
    Standard Grant
Collaborative Research: Zeolite catalysts for biomass upgrading
合作研究:用于生物质升级的沸石催化剂
  • 批准号:
    1705490
  • 财政年份:
    2017
  • 资助金额:
    $ 20.87万
  • 项目类别:
    Standard Grant
Collaborative Research: Zeolite catalysts for biomass upgrading
合作研究:用于生物质升级的沸石催化剂
  • 批准号:
    1705675
  • 财政年份:
    2017
  • 资助金额:
    $ 20.87万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了