CPS: Synergy: Collaborative Research: Adaptive Intelligence for Cyber-Physical Automotive Active Safety - System Design and Evaluation
CPS:协同:协作研究:网络物理汽车主动安全的自适应智能 - 系统设计和评估
基本信息
- 批准号:1544814
- 负责人:
- 金额:$ 56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-15 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The automotive industry finds itself at a cross-roads. Current advances in MEMS sensor technology, the emergence of embedded control software, the rapid progress in computer technology, digital image processing, machine learning and control algorithms, along with an ever increasing investment in vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) technologies, are about to revolutionize the way we use vehicles and commute in everyday life. Automotive active safety systems, in particular, have been used with enormous success in the past 50 years and have helped keep traffic accidents in check. Still, more than 30,000 deaths and 2,000,000 injuries occur each year in the US alone, and many more worldwide. The impact of traffic accidents on the economy is estimated to be as high as $300B/yr in the US alone. Further improvement in terms of driving safety (and comfort) necessitates that the next generation of active safety systems are more proactive (as opposed to reactive) and can comprehend and interpret driver intent. Future active safety systems will have to account for the diversity of drivers' skills, the behavior of drivers in traffic, and the overall traffic conditions.This research aims at improving the current capabilities of automotive active safety control systems (ASCS) by taking into account the interactions between the driver, the vehicle, the ASCS and the environment. Beyond solving a fundamental problem in automotive industry, this research will have ramifications in other cyber-physical domains, where humans manually control vehicles or equipment including: flying, operation of heavy machinery, mining, tele-robotics, and robotic medicine. Making autonomous/automated systems that feel and behave "naturally" to human operators is not always easy. As these systems and machines participate more in everyday interactions with humans, the need to make them operate in a predictable manner is more urgent than ever.To achieve the goals of the proposed research, this project will use the estimation of the driver's cognitive state to adapt the ASCS accordingly, in order to achieve a seamless operation with the driver. Specifically, new methodologies will be developed to infer long-term and short-term behavior of drivers via the use of Bayesian networks and neuromorphic algorithms to estimate the driver's skills and current state of attention from eye movement data, together with dynamic motion cues obtained from steering and pedal inputs. This information will be injected into the ASCS operation in order to enhance its performance by taking advantage of recent results from the theory of adaptive and real-time, model-predictive optimal control. The correct level of autonomy and workload distribution between the driver and ASCS will ensure that no conflicts arise between the driver and the control system, and the safety and passenger comfort are not compromised. A comprehensive plan will be used to test and validate the developed theory by collecting measurements from several human subjects while operating a virtual reality-driving simulator.
汽车行业发现自己正处于十字路口。当前MEMS传感器技术的进步,嵌入式控制软件的出现,计算机技术、数字图像处理、机器学习和控制算法的快速进步,以及车对车(V2V)和车对车的投资不断增加-基础设施(V2I)技术即将彻底改变我们在日常生活中使用车辆和通勤的方式。尤其是汽车主动安全系统,在过去 50 年中取得了巨大成功,有助于控制交通事故。尽管如此,仅在美国,每年就有超过 30,000 人死亡和 2,000,000 人受伤,全世界范围内的死亡人数也更多。据估计,仅在美国,交通事故对经济的影响就高达每年 300 亿美元。驾驶安全(和舒适性)方面的进一步改进需要下一代主动安全系统更加主动(而不是被动)并且能够理解和解释驾驶员意图。未来的主动安全系统将必须考虑驾驶员技能的多样性、驾驶员在交通中的行为以及整体交通状况。本研究旨在通过考虑提高汽车主动安全控制系统(ASCS)的当前能力。驾驶员、车辆、ASCS 和环境之间的交互。除了解决汽车行业的基本问题之外,这项研究还将对其他网络物理领域产生影响,其中人类手动控制车辆或设备,包括:飞行、重型机械操作、采矿、远程机器人和机器人医疗。制造对人类操作员来说感觉和行为“自然”的自主/自动化系统并不总是那么容易。随着这些系统和机器更多地参与与人类的日常互动,使它们以可预测的方式运行的需求比以往任何时候都更加迫切。为了实现拟议研究的目标,该项目将使用驾驶员认知状态的估计来相应地调整 ASCS,以实现与驾驶员的无缝操作。具体来说,将开发新的方法来推断驾驶员的长期和短期行为,通过使用贝叶斯网络和神经形态算法来估计驾驶员的技能和从眼动数据中获得的当前注意力状态,以及从转向和踏板输入。这些信息将被注入 ASCS 操作中,以便利用自适应和实时、模型预测最优控制理论的最新成果来提高其性能。驾驶员和 ASCS 之间正确的自主权和工作负载分配水平将确保驾驶员和控制系统之间不会发生冲突,并且安全性和乘客舒适度不会受到影响。一个全面的计划将用于通过在操作虚拟现实驾驶模拟器时收集多个人体受试者的测量结果来测试和验证所开发的理论。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Panagiotis Tsiotras其他文献
Time-Optimal Control of Axisymmetric Rigid Spacecraft Using Two Controls
轴对称刚性航天器的两种控制的时间最优控制
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Haijun Shen;Panagiotis Tsiotras - 通讯作者:
Panagiotis Tsiotras
Zero-Sum Games Between Large-Population Heterogeneous Teams: A Reachability-based Analysis under Mean-Field Sharing
大规模异构团队之间的零和博弈:平均场共享下基于可达性的分析
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Yue Guan;Mohammad Afshari;Panagiotis Tsiotras - 通讯作者:
Panagiotis Tsiotras
Communication-Aware Map Compression for Online Path-Planning
用于在线路径规划的通信感知地图压缩
- DOI:
10.48550/arxiv.2309.13451 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Evangelos Psomiadis;Dipankar Maity;Panagiotis Tsiotras - 通讯作者:
Panagiotis Tsiotras
Multi-Parameter Dependent Lyapunov Functions for the Stability Analysis of Parameter-Dependent LTI Systems
用于参数相关 LTI 系统稳定性分析的多参数相关 Lyapunov 函数
- DOI:
10.1109/.2005.1467197 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
X. Zhang;Panagiotis Tsiotras;P. Bliman - 通讯作者:
P. Bliman
Use of describing functions for predicting low-loss AMB performance
使用描述函数预测低损耗 AMB 性能
- DOI:
10.1109/acc.2005.1470439 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
K. Diemunsch;Panagiotis Tsiotras - 通讯作者:
Panagiotis Tsiotras
Panagiotis Tsiotras的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Panagiotis Tsiotras', 18)}}的其他基金
CPS: Medium: Learning-Enabled Assistive Driving: Formal Assurances during Operation and Training
CPS:中:支持学习的辅助驾驶:操作和培训期间的正式保证
- 批准号:
2219755 - 财政年份:2022
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
AstroSLAM - A Robust and Reliable Visual Localization and Pose Estimation Architecture for Space Robots in Orbit
AstroSLAM - 用于轨道空间机器人的稳健可靠的视觉定位和姿态估计架构
- 批准号:
2101250 - 财政年份:2021
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
RI: Small: Robust Autonomy for Uncertain Systems using Randomized Trees
RI:小型:使用随机树实现不确定系统的鲁棒自治
- 批准号:
2008686 - 财政年份:2020
- 资助金额:
$ 56万 - 项目类别:
Continuing Grant
S&AS: FND: Decision-Making for Autonomous Systems with Limited Resources
S
- 批准号:
1849130 - 财政年份:2019
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
Safe, Resilient and Efficient Operation of Autonomous Aerial and Ground Vehicles
自主空中和地面车辆的安全、弹性和高效运行
- 批准号:
1662542 - 财政年份:2017
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
RI: Small: Incremental Sampling-Based Algorithms and Stochastic Optimal Control on Random Graphs
RI:小:基于增量采样的算法和随机图上的随机最优控制
- 批准号:
1617630 - 财政年份:2016
- 资助金额:
$ 56万 - 项目类别:
Continuing Grant
NRI: Information-Theoretic Trajectory Optimization for Motion Planning and Control with Applications to Space Proximity Operations
NRI:运动规划和控制的信息理论轨迹优化及其在空间邻近操作中的应用
- 批准号:
1426945 - 财政年份:2014
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
Environment-Agent Interaction in Autonomous Networked Teams with Applications to Minimum-Time Coordinated Control of Multi-Agent Systems
自治网络团队中的环境-智能体交互及其在多智能体系统最短时间协调控制中的应用
- 批准号:
1160780 - 财政年份:2012
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Advanced Driver Assistance and Active Safety Systems through Driver's Controllability Augmentation and Adaptation
GOALI/合作研究:通过驾驶员可控性增强和适应实现高级驾驶员辅助和主动安全系统
- 批准号:
1234286 - 财政年份:2012
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
Multiscale, Beamlet-Based Data Processing for the Solution of Shortest-Path Problems with Applications to Embedded Vehicle Autonomy
用于解决嵌入式车辆自主应用中最短路径问题的多尺度、基于子束的数据处理
- 批准号:
0856565 - 财政年份:2009
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
相似国自然基金
诊疗一体化PS-Hc@MB协同训练介导脑小血管病康复的作用及机制研究
- 批准号:82372561
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
BLM解旋酶抑制剂纳米马达智能给药系统构建及对前列腺癌的协同治疗作用
- 批准号:82360558
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
微生物-零价铁组合式PRB修复铀污染地下水协同作用机制研究
- 批准号:42302293
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
阳-非离子药剂协同强化铁矿石反浮选过程的界面作用调控机制
- 批准号:52374261
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
ALDOC协同糖酵解与PHB2介导的线粒体自噬促进心梗后心肌再生修复的作用机制研究
- 批准号:82370344
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
CPS:Medium:Collaborative Research: High-Fidelity High-Resolution and Secure Monitoring and Control of Future Grids: a synergy of AI, data science, and hardware security
CPS:中:协作研究:未来电网的高保真高分辨率和安全监控:人工智能、数据科学和硬件安全的协同作用
- 批准号:
1932196 - 财政年份:2019
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
CPS:Medium:Collaborative Research:High-Fidelity High-Resolution and Secure Monitoring and Control of Future Grids: a synergy of AI, data science, and hardware security
CPS:中:协作研究:未来电网的高保真高分辨率和安全监控:人工智能、数据科学和硬件安全的协同作用
- 批准号:
1932501 - 财政年份:2019
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Towards Effective and Efficient Sensing-Motion Co-Design of Swarming Cyber-Physical Systems
CPS:协同:协作研究:实现集群网络物理系统的有效和高效的传感-运动协同设计
- 批准号:
1936599 - 财政年份:2019
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: DEUS: Distributed, Efficient, Ubiquitous and Secure Data Delivery Using Autonomous Underwater Vehicles
CPS:协同:协作研究:DEUS:使用自主水下航行器进行分布式、高效、无处不在和安全的数据传输
- 批准号:
1853257 - 财政年份:2018
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: TickTalk: Timing API for Federated Cyberphysical Systems
CPS:协同:协作研究:TickTalk:联合网络物理系统的计时 API
- 批准号:
1645578 - 财政年份:2018
- 资助金额:
$ 56万 - 项目类别:
Standard Grant