GOALI/Collaborative Research: Advanced Driver Assistance and Active Safety Systems through Driver's Controllability Augmentation and Adaptation
GOALI/合作研究:通过驾驶员可控性增强和适应实现高级驾驶员辅助和主动安全系统
基本信息
- 批准号:1234286
- 负责人:
- 金额:$ 22.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-15 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research objective of this award is to investigate the next generation, proactive, driver-assist active safety control systems (ASCS) for commercial passenger vehicles. The main novel ingredient over existing methods is the adaptation of the ASCS specifications and operation to the individual driver habits and driving skills (e.g., aggressive or timid), his/her current cognitive state (e.g., attentive or not). By using recently developed techniques from the field of computational neuroscience and adaptive control theory, this research will develop algorithms that will capture the state of the driver, the vehicle and the environment from automotive sensors and behavioral (e.g., eye movement) measurements that will be subsequently used to adapt and customize the ASCS to particular situations so as to achieve maximum performance (e.g., minimum stopping distance during emergency braking, etc). This research will take advantage of recent advances in sensor technology, which has led to the reliable fusion of data, so as to provide situational awareness for the vehicle and the persistent monitoring of the (re)actions of the driver.If successful, this research will enable new levels of performance for the current active safety systems for passenger vehicles, thus leading to decreased accident rates, increased comfort and improved fuel economy. Graduate and undergraduate engineering students as well as local high school teachers will benefit from their involvement in this research through NSF's REU and RET projects and through Georgia Tech?s PURA and Dash undergraduate research fellowship programs. Undergraduate and high-school minority students will actively participate in data collection and analysis. Under-represented groups will be particularly targeted for participation in the research activities under this award, directly through active recruitment and indirectly through the collaboration with the industry partner, Ford Motor Company, e.g., in the form of summer internships.
该奖项的研究目标是调查商用乘用车的下一代,积极主动的,驾驶员主动的安全控制系统(ASC)。现有方法的主要新颖成分是将ASC的规格和操作适应单个驾驶员习惯和驾驶技能(例如,侵略性或胆怯),他/她当前的认知状态(例如,无论是专心与否)。通过使用来自计算神经科学和自适应控制理论领域的最近开发的技术,该研究将开发算法,这些算法将捕获驾驶员,车辆和环境的状态,来自汽车传感器和行为(例如,眼动)测量值随后用来适应和自定义ASC在特定情况下,以实现最大的性能(例如,紧急制动期间的最小停车距离等)。这项研究将利用传感器技术的最新进展,这导致了数据的可靠融合,从而为车辆提供情境意识,并持续对驾驶员的(重新)行动进行持续监控。将为当前的乘用车行动安全系统提供新的绩效水平,从而导致事故发生率降低,舒适性提高和燃油经济性提高。研究生和本科工程专业的学生以及当地的高中教师将通过NSF的REU和RET项目以及佐治亚理工学院的Pura和Dash本科研究奖学金计划而受益。本科和高中少数民族学生将积极参与数据收集和分析。代表性不足的团体将特别针对通过与行业合作伙伴福特汽车公司(例如以暑期实习的形式)合作,直接通过积极招聘和间接地参加该奖项的研究活动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Panagiotis Tsiotras其他文献
Time-Optimal Control of Axisymmetric Rigid Spacecraft Using Two Controls
轴对称刚性航天器的两种控制的时间最优控制
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Haijun Shen;Panagiotis Tsiotras - 通讯作者:
Panagiotis Tsiotras
Zero-Sum Games Between Large-Population Heterogeneous Teams: A Reachability-based Analysis under Mean-Field Sharing
大规模异构团队之间的零和博弈:平均场共享下基于可达性的分析
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Yue Guan;Mohammad Afshari;Panagiotis Tsiotras - 通讯作者:
Panagiotis Tsiotras
Communication-Aware Map Compression for Online Path-Planning
用于在线路径规划的通信感知地图压缩
- DOI:
10.48550/arxiv.2309.13451 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Evangelos Psomiadis;Dipankar Maity;Panagiotis Tsiotras - 通讯作者:
Panagiotis Tsiotras
Multi-Parameter Dependent Lyapunov Functions for the Stability Analysis of Parameter-Dependent LTI Systems
用于参数相关 LTI 系统稳定性分析的多参数相关 Lyapunov 函数
- DOI:
10.1109/.2005.1467197 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
X. Zhang;Panagiotis Tsiotras;P. Bliman - 通讯作者:
P. Bliman
Use of describing functions for predicting low-loss AMB performance
使用描述函数预测低损耗 AMB 性能
- DOI:
10.1109/acc.2005.1470439 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
K. Diemunsch;Panagiotis Tsiotras - 通讯作者:
Panagiotis Tsiotras
Panagiotis Tsiotras的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Panagiotis Tsiotras', 18)}}的其他基金
CPS: Medium: Learning-Enabled Assistive Driving: Formal Assurances during Operation and Training
CPS:中:支持学习的辅助驾驶:操作和培训期间的正式保证
- 批准号:
2219755 - 财政年份:2022
- 资助金额:
$ 22.56万 - 项目类别:
Standard Grant
AstroSLAM - A Robust and Reliable Visual Localization and Pose Estimation Architecture for Space Robots in Orbit
AstroSLAM - 用于轨道空间机器人的稳健可靠的视觉定位和姿态估计架构
- 批准号:
2101250 - 财政年份:2021
- 资助金额:
$ 22.56万 - 项目类别:
Standard Grant
RI: Small: Robust Autonomy for Uncertain Systems using Randomized Trees
RI:小型:使用随机树实现不确定系统的鲁棒自治
- 批准号:
2008686 - 财政年份:2020
- 资助金额:
$ 22.56万 - 项目类别:
Continuing Grant
S&AS: FND: Decision-Making for Autonomous Systems with Limited Resources
S
- 批准号:
1849130 - 财政年份:2019
- 资助金额:
$ 22.56万 - 项目类别:
Standard Grant
Safe, Resilient and Efficient Operation of Autonomous Aerial and Ground Vehicles
自主空中和地面车辆的安全、弹性和高效运行
- 批准号:
1662542 - 财政年份:2017
- 资助金额:
$ 22.56万 - 项目类别:
Standard Grant
RI: Small: Incremental Sampling-Based Algorithms and Stochastic Optimal Control on Random Graphs
RI:小:基于增量采样的算法和随机图上的随机最优控制
- 批准号:
1617630 - 财政年份:2016
- 资助金额:
$ 22.56万 - 项目类别:
Continuing Grant
CPS: Synergy: Collaborative Research: Adaptive Intelligence for Cyber-Physical Automotive Active Safety - System Design and Evaluation
CPS:协同:协作研究:网络物理汽车主动安全的自适应智能 - 系统设计和评估
- 批准号:
1544814 - 财政年份:2015
- 资助金额:
$ 22.56万 - 项目类别:
Standard Grant
NRI: Information-Theoretic Trajectory Optimization for Motion Planning and Control with Applications to Space Proximity Operations
NRI:运动规划和控制的信息理论轨迹优化及其在空间邻近操作中的应用
- 批准号:
1426945 - 财政年份:2014
- 资助金额:
$ 22.56万 - 项目类别:
Standard Grant
Environment-Agent Interaction in Autonomous Networked Teams with Applications to Minimum-Time Coordinated Control of Multi-Agent Systems
自治网络团队中的环境-智能体交互及其在多智能体系统最短时间协调控制中的应用
- 批准号:
1160780 - 财政年份:2012
- 资助金额:
$ 22.56万 - 项目类别:
Standard Grant
Multiscale, Beamlet-Based Data Processing for the Solution of Shortest-Path Problems with Applications to Embedded Vehicle Autonomy
用于解决嵌入式车辆自主应用中最短路径问题的多尺度、基于子束的数据处理
- 批准号:
0856565 - 财政年份:2009
- 资助金额:
$ 22.56万 - 项目类别:
Standard Grant
相似国自然基金
基于交易双方异质性的工程项目组织间协作动态耦合研究
- 批准号:72301024
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向协作感知车联网的信息分发时效性保证关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: GOALI: Bio-inspired bistable energy harvesting for fish telemetry tags
合作研究:GOALI:用于鱼类遥测标签的仿生双稳态能量收集
- 批准号:
2245117 - 财政年份:2022
- 资助金额:
$ 22.56万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Instabilities and Local Strains in Engineered Cartilage Scaffold
GOALI/合作研究:工程软骨支架的不稳定性和局部应变
- 批准号:
2129825 - 财政年份:2022
- 资助金额:
$ 22.56万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Instabilities and Local Strains in Engineered Cartilage Scaffold
GOALI/合作研究:工程软骨支架的不稳定性和局部应变
- 批准号:
2129776 - 财政年份:2022
- 资助金额:
$ 22.56万 - 项目类别:
Standard Grant
DMREF: Collaborative Research: GOALI: Accelerating Discovery of High Entropy Silicates for Extreme Environments
DMREF:合作研究:GOALI:加速极端环境中高熵硅酸盐的发现
- 批准号:
2219788 - 财政年份:2022
- 资助金额:
$ 22.56万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Control-Oriented Modeling and Predictive Control of High Efficiency Low-emission Natural Gas Engines
GOALI/协作研究:高效低排放天然气发动机的面向控制的建模和预测控制
- 批准号:
2302217 - 财政年份:2022
- 资助金额:
$ 22.56万 - 项目类别:
Standard Grant