SHF: Small: Novel Architecture Energy Harvesting for Sustainable Spot Cooling and Energy Management

SHF:小型:用于可持续点冷却和能源管理的新型能量收集架构

基本信息

  • 批准号:
    1525462
  • 负责人:
  • 金额:
    $ 41.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

Increased power dissipation in computing devices has led to a sharp rise in thermal hot spots on computer chips, creating a vicious cycle ? higher temperatures bring higher leakage power, and higher power dissipation increases temperature, thereby leading to thermal avalanches. To reduce the additional power dissipation and reliability concerns caused by high temperature, current heat management approaches apply cooling mechanisms to remove heat aggressively as well as devise dynamic management techniques that avoid thermal emergencies by slowing down heat generation of processors. However, current trends to squeeze more computing power, e.g., in the form of large data centers or mobile devices, stand in direct conflict to our ability to slow down demand for more energy. The shrinking of transistor sizes further exacerbates the problem of reduced energy efficiency. The solution proposed in this work is anticipated to not only reduce cooling expenses and ambient temperatures, but also increase energy utilization, device lifetime, and physical space utilization. The technology developed here can be applied to a broad range of computing devices, large or small. If the research is successful, it has the potential of having a significant economic benefit as well as a significant, positive impact on the environment. This is because performance improvement and power reduction of processors under thermal constraints will have a direct impact upon the cooling costs of huge data warehouses such as those of Google, Yahoo, Amazon, etc. Data centers in the US consume many tens of billion kWh of electricity and generate about nearly a billion metric tons of carbon dioxide. Even if this project resulted in a 5% improvement in the energy consumption of a modern high performance processor and therefore, in the millions of such processors housed in data centers, that itself could reduce the amount of carbon dioxide released into the atmosphere per year, and realize ten of millions of dollars in energy cost savings. Furthermore, this energy harvesting research requires cross-disciplinary engagement in areas such as material engineering, VLSI architecture, system architecture, and mechanical engineering and will attract a diverse set of student researchers. Overall, the engineering and scientific contributions will also have important societal impacts, including the broadening of ASU?s engineering curriculum, the engagement of graduate and undergraduate students in research activities, the potential of creating high-school or middle-school scientific projects, and the increased representation of target underrepresented minorities in science and engineering.This project addresses the heat management problem using an innovative approach ? rather than removing heat or slowing down heat generation, the proposed work transforms the waste heat into reusable energy for new applications such as self-powered spot-cooling. The main objective of this project is to design and implement a novel architectural framework to create the mechanisms, policies, and system support that allow waste heat generated by computing devices to be harvested efficiently, to achieve better energy utilization efficiency. This will be achieved by exploiting the thermal characteristics of modern computing nodes and by leveraging thermoelectric and pyroelectric energy harvesting materials. By leveraging the thermoelectric and pyroelectric effects at the architectural level, the varying spatial and temporal thermal gradients from computations are exploited to transform processor waste heat (that otherwise dissipates) into reusable energy. A novel application is also proposed that uses the newly introduced energy in the form of a self-sustaining cooling system for processors. This work evaluates the applicability of energy harvesting materials by considering the intricate electrical properties of the materials and heterogeneous temperature distribution of the components on a processor. The proposed methodology is generic and can be readily adopted with commercially-available thermoelectric and pyroelectric energy harvesting materials. Nonetheless, with breakthroughs in the energy conversion efficiency of the materials, the proposed framework could be applied directly with a further improved degree of harvested energy, leading to even higher system energy efficiency.
计算设备功耗的增加导致计算机芯片上的热点急剧增加,形成恶性循环?较高的温度会带来较高的泄漏功率,较高的功耗会增加温度,从而导致热雪崩。为了减少高温引起的额外功耗和可靠性问题,当前的热管理方法应用冷却机制来积极散热,并设计动态管理技术,通过减慢处理器的发热来避免热紧急情况。然而,当前以大型数据中心或移动设备的形式挤压更多计算能力的趋势,与我们减缓更多能源需求的能力直接冲突。晶体管尺寸的缩小进一步加剧了能源效率降低的问题。这项工作中提出的解决方案预计不仅可以降低冷却费用和环境温度,而且可以提高能源利用率、设备寿命和物理空间利用率。这里开发的技术可以应用于广泛的计算设备,无论大小。如果研究成功,它有可能产生显着的经济效益,并对环境产生重大的积极影响。这是因为处理器在热约束下的性能提升和功耗降低将直接影响谷歌、雅虎、亚马逊等大型数据仓库的冷却成本。美国的数据中心消耗了数百亿千瓦时的电力。发电并产生约近十亿吨二氧化碳。即使该项目使现代高性能处理器的能耗降低了 5%,因此,在数据中心内安装的数百万个此类处理器中,其本身也可以减少每年释放到大气中的二氧化碳量,并实现数千万美元的能源成本节省。 此外,这项能量收集研究需要材料工程、超大规模集成电路架构、系统架构和机械工程等领域的跨学科参与,并将吸引各种各样的学生研究人员。总体而言,工程和科学贡献也将产生重要的社会影响,包括扩大亚利桑那州立大学的工程课程、研究生和本科生参与研究活动、创建高中或初中科学项目的潜力,以及增加科学和工程领域代表性不足的少数群体的代表性。该项目使用创新方法解决热管理问题?拟议的工作不是消除热量或减缓热量产生,而是将废热转化为可重复利用的能源,用于自供电点冷却等新应用。该项目的主要目标是设计和实现一种新颖的架构框架,以创建机制、政策和系统支持,使计算设备产生的废热能够得到有效收集,从而实现更好的能源利用效率。这将通过利用现代计算节点的热特性以及利用热电和热电能量收集材料来实现。通过在架构层面利用热电和热电效应,利用计算中不同的空间和时间热梯度将处理器废热(否则会消散)转化为可重复使用的能量。还提出了一种新颖的应用,该应用以处理器自维持冷却系统的形式使用新引入的能源。这项工作通过考虑材料复杂的电特性和处理器上组件的不均匀温度分布来评估能量收集材料的适用性。所提出的方法是通用的,可以很容易地采用市售的热电和热电能量收集材料。尽管如此,随着材料能量转换效率的突破,所提出的框架可以直接应用,进一步提高能量收集程度,从而获得更高的系统能源效率。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carole-Jean Wu其他文献

Carole-Jean Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Carole-Jean Wu', 18)}}的其他基金

Student Travel Support - 26th International Conference on Parallel Architectures and Compilation Techniques (PACT 2017)
学生旅行支持 - 第 26 届并行架构和编译技术国际会议 (PACT 2017)
  • 批准号:
    1725115
  • 财政年份:
    2017
  • 资助金额:
    $ 41.91万
  • 项目类别:
    Standard Grant
Student Travel Support for the 49th IEEE/ACM Symposium on Microarchitecture (MICRO)
第 49 届 IEEE/ACM 微架构研讨会 (MICRO) 的学生旅行支持
  • 批准号:
    1644591
  • 财政年份:
    2016
  • 资助金额:
    $ 41.91万
  • 项目类别:
    Standard Grant
SHF: Small: Latency Tolerance Aware Runtime Optimization for General-Purpose GPU Architectures
SHF:小型:通用 GPU 架构的延迟容忍感知运行时优化
  • 批准号:
    1618039
  • 财政年份:
    2016
  • 资助金额:
    $ 41.91万
  • 项目类别:
    Standard Grant
Student Travel Support for the 2014 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS-2014)
2014 年 IEEE 国际系统和软件性能分析研讨会 (ISPASS-2014) 学生旅行支持
  • 批准号:
    1420090
  • 财政年份:
    2014
  • 资助金额:
    $ 41.91万
  • 项目类别:
    Standard Grant
Student Travel Support for the 2014 Career Workshop for Women and Minorities in Computer Architecture (CWWMCA)
2014 年计算机架构领域女性和少数族裔职业研讨会 (CWWMCA) 的学生差旅支持
  • 批准号:
    1513520
  • 财政年份:
    2014
  • 资助金额:
    $ 41.91万
  • 项目类别:
    Standard Grant
EAGER: Characterization and Modeling for Architectural Thermal Energy Harvesting
EAGER:建筑热能收集的表征和建模
  • 批准号:
    1358805
  • 财政年份:
    2014
  • 资助金额:
    $ 41.91万
  • 项目类别:
    Standard Grant

相似国自然基金

小分子代谢物Catechin与TRPV1相互作用激活外周感觉神经元介导尿毒症瘙痒的机制研究
  • 批准号:
    82371229
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
DHEA抑制小胶质细胞Fis1乳酸化修饰减轻POCD的机制
  • 批准号:
    82301369
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SETDB1调控小胶质细胞功能及参与阿尔茨海默病发病机制的研究
  • 批准号:
    82371419
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
PTBP1驱动H4K12la/BRD4/HIF1α复合物-PKM2正反馈环路促进非小细胞肺癌糖代谢重编程的机制研究及治疗方案探索
  • 批准号:
    82303616
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

SHF: Small: Novel SW/HW Approximate Computing Methodologies with Case Studies on Biometric Security Systems
SHF:小型:新颖的软件/硬件近似计算方法以及生物识别安全系统的案例研究
  • 批准号:
    1814920
  • 财政年份:
    2018
  • 资助金额:
    $ 41.91万
  • 项目类别:
    Standard Grant
SHF: SMALL: A Novel Algorithm for Automated Synthesis of Passive, Causal, and Stable Models for Optical Interconnects
SHF:SMALL:一种自动合成光互连无源、因果和稳定模型的新算法
  • 批准号:
    1816542
  • 财政年份:
    2018
  • 资助金额:
    $ 41.91万
  • 项目类别:
    Standard Grant
SHF: Small: PAW: Novel Functionality in Programming Models to Productively Abstract Wavefront Parallel Pattern
SHF:小:PAW:编程模型中的新颖功能,可有效抽象波前并行图案
  • 批准号:
    1814609
  • 财政年份:
    2018
  • 资助金额:
    $ 41.91万
  • 项目类别:
    Standard Grant
SHF: Small: Novel Techniques for Handling Memory Model Bugs
SHF:小:处理内存模型错误的新技术
  • 批准号:
    1319983
  • 财政年份:
    2013
  • 资助金额:
    $ 41.91万
  • 项目类别:
    Standard Grant
SHF: SMALL: Embedded Cooling of High-Performance ICs Using Novel Nanostructured Thermoelectrics: Multiscale Software Development and Device Optimization
SHF:小型:使用新型纳米结构热电材料的高性能 IC 嵌入式冷却:多尺度软件开发和设备优化
  • 批准号:
    1218839
  • 财政年份:
    2012
  • 资助金额:
    $ 41.91万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了