Algorithms for Nonlinear Nonconvex Optimization under Uncertainty
不确定性下的非线性非凸优化算法
基本信息
- 批准号:1522747
- 负责人:
- 金额:$ 21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-15 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator will develop computational methods that seek to find optimal decisions when not all information is known exactly. This situation arises when future events cannot be predicted with high accuracy or when quantities can only be estimated from limited data. A similar setting occurs when computer programs are employed to simulate processes. In that case, the computer output can be noisy, due to limited precision of the underlying numerical algorithms or due to randomness inherent in the simulation. An illustrative example is the deployment of solar or wind energy: Electricity demand estimates based on past observations are uncertain, and weather forecast models are started from random perturbations of the initial conditions. Computational optimization algorithms exist that address data uncertainty, but current methods are not able to handle difficult nonlinear relationships in the mathematical optimization model. This research will overcome this limitation on two fronts. The first research project will result in optimization algorithms for problems in which constraints need to be satisfied only with a given probability. These methods will permit a much wider range of these constraints than the present state-of-the-art. The second project will produce methods that optimize computer simulations by explicitly addressing the nature of the output noise. In contrast to existing approaches, these algorithms will not stagnate at spurious solutions induced by the noise. All new methods will be implemented in software and evaluated on real-life problems, and new mathematical theory will be developed that proves the convergence of these methods.In this project, new algorithms for continuous chance-constrained optimization will be developed. In current approaches, the objective and constraint functions are required to be linear or convex, and the nonconvexity induced by the chance-constraints is handled either by conservative convex approximations or by the global solution of discrete formulations via combinatorial branch-and-bound enumeration. The new methods will permit problem statements that involve nonlinear and nonconvex objective functions and include joint chance constraints with nonconvex probabilistic constraints. This is made possible by seeking only local optima, which can be found more easily than global minima but are still highly valuable in practice. As a result, established techniques from nonconvex nonlinear optimization can be built upon and extended. The new sequential quadratic chance-constrained programming framework requires the introduction of new chance-constrained trust-region subproblem solvers and convergence theory for chance-constrained penalty functions which will be developed in this project. The PI will also develop a derivative-free optimization method for objective functions with deterministic noise caused by numerical error in computer simulations. The approach is based on a smoothed objective function obtained via convolution with a Gaussian kernel. The integral in the new objective is approximated by Monte-Carlo sample average approximation. Adaptive multiple importance sampling permits the reuse of the expensive function evaluations computed in all previous iterations.
研究人员将开发计算方法,在并非所有信息都准确已知的情况下寻求最佳决策。 当无法高精度预测未来事件或只能根据有限的数据估计数量时,就会出现这种情况。 当使用计算机程序来模拟过程时,会发生类似的情况。在这种情况下,由于底层数值算法的精度有限或由于模拟固有的随机性,计算机输出可能会有噪声。一个说明性的例子是太阳能或风能的部署:基于过去观测的电力需求估计是不确定的,天气预报模型是从初始条件的随机扰动开始的。存在解决数据不确定性的计算优化算法,但当前的方法无法处理数学优化模型中困难的非线性关系。这项研究将从两个方面克服这一限制。第一个研究项目将针对仅需要满足给定概率的约束的问题产生优化算法。这些方法将允许比目前最先进的技术更广泛的限制。第二个项目将通过明确解决输出噪声的性质来产生优化计算机模拟的方法。与现有方法相比,这些算法不会停滞在噪声引起的虚假解上。 所有新方法都将在软件中实现并针对现实问题进行评估,并且将开发新的数学理论来证明这些方法的收敛性。在该项目中,将开发用于连续机会约束优化的新算法。在当前的方法中,目标函数和约束函数需要是线性的或凸的,并且由机会约束引起的非凸性通过保守的凸近似或通过组合分支定界枚举的离散公式的全局解来处理。 新方法将允许涉及非线性和非凸目标函数的问题陈述,并包括具有非凸概率约束的联合机会约束。这是通过仅寻求局部最优来实现的,局部最优比全局最小值更容易找到,但在实践中仍然具有很高的价值。因此,可以建立和扩展非凸非线性优化的既定技术。新的顺序二次机会约束规划框架需要引入新的机会约束信任域子问题求解器和机会约束罚函数的收敛理论,这些将在本项目中开发。 PI 还将开发一种无导数优化方法,用于具有由计算机模拟中的数值误差引起的确定性噪声的目标函数。该方法基于通过与高斯核卷积获得的平滑目标函数。 新目标中的积分通过蒙特卡罗样本平均近似来近似。自适应多重重要性采样允许重用在所有先前迭代中计算的昂贵函数评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andreas Waechter其他文献
A complete nonlinear system solver using affine arithmetic
使用仿射算法的完整非线性系统求解器
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
A. Baharev;Endre R´ev;Jean;G. Trombettoni;Ignacio Araya;Arnold Neumaier;R. B. Kearfott;Lubomir Kolev;Andrew Makhorin;Stefan Vigerske;Andreas Waechter;Peter Spel;Renata Silva;Luis Nunes;Iain Duff;John K. Reid - 通讯作者:
John K. Reid
A Quadratically Convergent Sequential Programming Method for Second-Order Cone Programs Capable of Warm Starts
热启动二阶锥规划的二次收敛顺序规划方法
- DOI:
- 发表时间:
2022-07-07 - 期刊:
- 影响因子:0
- 作者:
Xin Luo;Andreas Waechter - 通讯作者:
Andreas Waechter
Andreas Waechter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andreas Waechter', 18)}}的其他基金
Novel Decomposition Techniques Enabling Scalable Computational Frameworks for Large-Scale Nonlinear Optimization Problems
新颖的分解技术为大规模非线性优化问题提供可扩展的计算框架
- 批准号:
2012410 - 财政年份:2020
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: Binary Constrained Convex Quadratic Programs with Complementarity Constraints and Extensions
协作研究:具有互补约束和扩展的二元约束凸二次规划
- 批准号:
1334639 - 财政年份:2013
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Novel Algorithms for Nonlinear Optimization
非线性优化的新算法
- 批准号:
1216920 - 财政年份:2012
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
相似国自然基金
鲁棒低秩张量恢复问题的非凸算法研究
- 批准号:11901600
- 批准年份:2019
- 资助金额:27.1 万元
- 项目类别:青年科学基金项目
高阶非线性多智能体系统分布式资源分配算法研究及应用
- 批准号:61803385
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
网络通讯中的优化模型与近似束方法的计算研究
- 批准号:61877032
- 批准年份:2018
- 资助金额:50.0 万元
- 项目类别:面上项目
非光滑非凸优化问题的交替线性化算法及其应用
- 批准号:11501074
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
几类无线通信中的非凸矩阵优化问题及算法研究
- 批准号:11401039
- 批准年份:2014
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of Approximation Algorithms with Theoretical Guarantee for Integer Programming Problem with Nonlinear Constraint
具有理论保证的非线性约束整数规划问题逼近算法的发展
- 批准号:
24500002 - 财政年份:2012
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developing deterministic algorithms for solving virtually all nonlinear optimization problems
开发确定性算法来解决几乎所有非线性优化问题
- 批准号:
22651057 - 财政年份:2010
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Study on Practical Algorithms for Nonlinear Integer Programs Based on Discrete Convex Analysis Approach
基于离散凸分析法的非线性整数规划实用算法研究
- 批准号:
18740042 - 财政年份:2006
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
計算困難な整数計画問題に対する主算法アプローチに基づく厳密解法の構築
基于素数算法方法构建计算困难整数规划问题的精确求解方法
- 批准号:
15740050 - 财政年份:2003
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
計算困難な整数計画問題に対する主算法アプローチに基づく厳密解法の構築
基于素数算法方法构建计算困难整数规划问题的精确求解方法
- 批准号:
15740050 - 财政年份:2003
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Young Scientists (B)