CIF: Small: Collaborative Research: Inference of Information Measures on Large Alphabets: Fundamental Limits, Fast Algorithims, and Applications
CIF:小型:协作研究:大字母表上信息测量的推断:基本限制、快速算法和应用
基本信息
- 批准号:1527105
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2017-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A key task in information theory is to characterize fundamental performance limits in compression, communication, and more general operational problems involving the storage, transmission and processing of information. Such characterizations are usually in terms of information measures, among the most fundamental of which are the Shannon entropy and the mutual information. In addition to their prominent operational roles in the traditional realms of information theory, information measures have found numerous applications in many statistical modeling and machine learning tasks. Various modern data-analytic applications deal with data sets naturally viewed as samples from a probability distribution over a large domain. Due to the typically large alphabet size and resource constraints, the practitioner contends with the difficulty of undersampling in applications ranging from corpus linguistics to neuroscience. One of the main goals of this project is the development of a general theory based on a new set of mathematical tools that will facilitate the construction and analysis of optimal estimation of information measures on large alphabets. The other major facet of this project is the incorporation of the new theoretical methodologies into machine learning algorithms, thereby significantly impacting current real-world learning practices. Successful completion of this project will result in enabling technologies and practical schemes - in applications ranging from analysis of neural response data to learning graphical models - that are provably much closer to attaining the fundamental performance limits than existing ones. The findings of this project will enrich existing big data-analytic curricula. A new course dedicated to high-dimensional statistical inference that addresses estimation for large-alphabet data in depth will be created and offered. Workshops on the themes and findings of this project will be organized and held at Stanford and UIUC. A comprehensive approximation-theoretic approach to estimating functionals of distributions on large alphabets will be developed via computationally efficient procedures based on best polynomial approximation, with provable essential optimality guarantees. Rooted in the high-dimensional statistics literature, our key observation is that while estimating the distribution itself requires the sample size to scale linearly with the alphabet size, it is possible to accurately estimate functionals of the distribution, such as entropy or mutual information, with sub-linear sample complexity. This requires going beyond the conventional wisdom by developing more sophisticated approaches than maximal likelihood (?plug-in?) estimation. The other major facet of this project is translating the new theoretical methodologies into highly scalable and efficient machine learning algorithms, thereby significantly impacting current real-world learning practices and significantly boosting the performance in several of the most prevalent machine learning applications, such as learning graphical models, that rely on mutual information estimation.
信息理论的关键任务是表征压缩,通信以及涉及信息的存储,传输和处理的更通用的操作问题中的基本绩效限制。这种特征通常是在信息度量方面,其中最基本的是香农熵和相互信息。除了它们在信息理论的传统领域中的突出作用外,信息度量还发现了许多统计建模和机器学习任务中的许多应用。各种现代数据分析应用程序涉及从大型域上的概率分布中自然视为样本的数据集。由于通常具有较大的字母大小和资源限制,因此从业者争辩说,在从语料库语言学到神经科学等的应用中,难以实现采样。该项目的主要目标之一是基于一组新的数学工具的一般理论的发展,该工具将有助于构建和分析大型字母内信息测量的最佳估计。该项目的另一个主要方面是将新的理论方法纳入机器学习算法,从而显着影响当前的现实世界学习实践。 该项目的成功完成将导致启用技术和实用方案 - 在从分析神经响应数据到学习图形模型的应用中 - 事实证明,这些计划比获得基本绩效限制要比现有方案更接近。该项目的发现将丰富现有的大数据分析课程。 将创建和提供一项专门针对高维统计推断的新课程,该课程将在深入的深度估算中进行估算。该项目主题和发现的研讨会将在斯坦福大学和UIUC举行。将通过基于最佳多项式近似的计算有效程序来开发一种全面的近似理论方法来估计大型字母上的分布功能,并具有可证明的基本最佳保证。我们的主要观察结果是植根于高维统计文献,但虽然估计分布本身需要与字母大小线性缩放,但可以准确估算分布的功能,例如熵或相互信息,且具有亚线性样品复杂性。这需要超越传统观点,而不是开发更多的复杂方法,而不是最大可能性(?插件?)估计。该项目的另一个主要方面是将新的理论方法转化为高度可扩展,高效的机器学习算法,从而显着影响当前的现实世界学习实践,并显着提高依赖相互信息估计的几种最普遍的机器学习应用程序,例如最普遍的机器学习应用程序,例如学习图形模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yihong Wu其他文献
Asymmetry diffraction magneto-optical phenomenon of NiFe grating
NiFe光栅的不对称衍射磁光现象
- DOI:
10.1063/1.1404126 - 发表时间:
2001 - 期刊:
- 影响因子:4
- 作者:
Y. Shen;Yihong Wu;T. Chong;Huiqing Xie;Zaibing Guo;Kebin Li;J. Qiu - 通讯作者:
J. Qiu
Disorder induced bands in first order Raman spectra of carbon nanowalls
碳纳米墙一阶拉曼光谱中的无序诱导带
- DOI:
10.1109/nano.2006.247613 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Haomin Wang;Yihong Wu;C. Choong;Jun Zhang;K. Teo;Zhenhua Ni;Zexiang Shen - 通讯作者:
Zexiang Shen
Multistate per-cell magnetoresistive random-access memory written at Curie point
在居里点写入的多态每单元磁阻随机存取存储器
- DOI:
10.1109/tmag.2002.802858 - 发表时间:
2002 - 期刊:
- 影响因子:2.1
- 作者:
Y. Zheng;Yihong Wu;Zaibing Guo;G. Han;Kebin Li;J. Qiu;H. Xie;P. Luo - 通讯作者:
P. Luo
Motion-Indicated Interest Dissemination With Directional Antennas for Wireless Sensor Networks With Mobile Sinks
用于带有移动接收器的无线传感器网络的定向天线的运动指示兴趣传播
- DOI:
10.1145/1182807.1182818 - 发表时间:
2006-10 - 期刊:
- 影响因子:0
- 作者:
Yihong Wu;Lin Zhang;Yiqun Wu;Zhisheng Niu - 通讯作者:
Zhisheng Niu
The effect of a copper interfacial layer on spin injection from ferromagnet to graphene
铜界面层对铁磁体到石墨烯自旋注入的影响
- DOI:
10.1007/s00339-013-7566-x - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Chi Zhang;Ying Wang;Baolei Wu;Yihong Wu - 通讯作者:
Yihong Wu
Yihong Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yihong Wu', 18)}}的其他基金
CIF: Medium: Collaborative Research: Learning in Networks: Performance Limits and Algorithms
CIF:媒介:协作研究:网络学习:性能限制和算法
- 批准号:
1900507 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
CAREER: Statistical Inference on Large Domains and Large Networks: Fundamental Limits and Efficient Algorithms
职业:大型域和大型网络的统计推断:基本限制和高效算法
- 批准号:
1651588 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
CIF: Small: Collaborative Research: Inference of Information Measures on Large Alphabets: Fundamental Limits, Fast Algorithims, and Applications
CIF:小型:协作研究:大字母表上信息测量的推断:基本限制、快速算法和应用
- 批准号:
1749241 - 财政年份:2016
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CIF: Small: Collaborative Research: Sketching and Tracking of Covariance Structures for High-dimensional Streaming Data
CIF:小型:协作研究:高维流数据协方差结构的草图和跟踪
- 批准号:
1423088 - 财政年份:2014
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
基于超宽频技术的小微型无人系统集群协作关键技术研究与应用
- 批准号:
- 批准年份:2020
- 资助金额:57 万元
- 项目类别:面上项目
异构云小蜂窝网络中基于协作预编码的干扰协调技术研究
- 批准号:61661005
- 批准年份:2016
- 资助金额:30.0 万元
- 项目类别:地区科学基金项目
密集小基站系统中的新型接入理论与技术研究
- 批准号:61301143
- 批准年份:2013
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
ScFVCD3-9R负载Bcl-6靶向小干扰RNA治疗EAMG的试验研究
- 批准号:81072465
- 批准年份:2010
- 资助金额:31.0 万元
- 项目类别:面上项目
基于小世界网络的传感器网络研究
- 批准号:60472059
- 批准年份:2004
- 资助金额:21.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343599 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343600 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research:CIF:Small:Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
- 批准号:
2326905 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research:CIF:Small:Fisher-Inspired Approach to Quickest Change Detection for Score-Based Models
合作研究:CIF:Small:Fisher 启发的基于评分模型的最快变化检测方法
- 批准号:
2334898 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research:CIF:Small:Fisher-Inspired Approach to Quickest Change Detection for Score-Based Models
合作研究:CIF:Small:Fisher 启发的基于评分模型的最快变化检测方法
- 批准号:
2334897 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant