EAGER: Engineering the Ionic Polymer Phase Surface Properties in a PEM Fuel Cell Catalyst Layer

EAGER:设计 PEM 燃料电池催化剂层中的离子聚合物相表面特性

基本信息

  • 批准号:
    1518755
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-04-15 至 2018-04-30
  • 项目状态:
    已结题

项目摘要

Nguyen - 1518755Proton exchange membrane fuel cells, also known as polymer electrolyte membrane (PEM) fuel cells, are being developed for transport, stationary fuel cell and portable fuel cell applications. A PEM fuel cell transforms the chemical energy liberated during the electrochemical reaction of hydrogen and oxygen to electrical energy, as opposed to the direct combustion of hydrogen and oxygen gases to produce thermal energy. The structure of their membrane assembly consists of an anode and a cathode that is separated by an electrolyte that contains a catalyst. A stream of hydrogen is delivered to the anode side where it is catalytically split into protons and electrons. The newly formed protons permeate through the polymer electrolyte membrane to the cathode side. The electrons travel along an external circuit to the cathode side creating the current output of the fuel cell. Meanwhile, a stream of oxygen is delivered to the cathode side where oxygen molecules react with the protons permeating through the polymer electrolyte membrane and the electrons arriving through the external circuit to form water molecules. Such fuel cells operate at relatively low temperatures, are small and lightweight, making them ideal as potential replacements for internal combustion engines that use fossil fuels as their energy source. This project is aimed at developing better PEM fuel cells.High power density operation in PEM fuel cells is often limited by high liquid water saturation levels in the catalyst layer due to high wettability of the ionic polymer phase that is added to provide three dimensional ionic access to the catalyst sites. In this EAGER project a simple approach is proposed based on a hypothesis generated from recent discoveries on interfacial properties of fluorocarbon-based ionic polymers. It is that heat treatment at high relative humidity leads to a polymer surface with a high fraction of sulfonic acid groups and a high degree of hydrophilicity, while heat treatment at dry conditions leads to a polymer surface with a small fraction of sulfonic acid groups and a very high fraction of the hydrophobic PTFE phase. Based on these observations, it is hypothesized that if the external surface of the ionic polymer coating located in the pores of the catalyst layers could be made hydrophobic, any water that is produced at the catalyst surface and diffuses through the polymer coating to the polymer coating/gas phase interface would bead and move away without forming a layer over the polymer coating. Therefore, oxygen and hydrogen gases would have direct access to the ionic polymer phase and catalyst surface. If this morphology could be achieved the fuel cell performance is expected to be greatly increased. To test this hypothesis, two tasks are proposed: 1) Validating the hypothesis that heat treating an ionic polymer (e.g., Nafion) in a dry or low RH condition will lead to a polymer film with a permanent hydrophobic external surface and determine the heat treatment conditions that are optimal for the formation of a permanent hydrophobic external surface; and 2) Confirming that modifying the membrane?s outer surface wetting property does not affect the proton conductivity within the polymer film, nor does it adversely affect the polymer/catalyst interface.If this approach is successful, it could transform water management in PEM fuel cells and lead to the development of higher performance, lower cost, and more durable fuel cells. This could accelerate the commercialization of fuel cell powered vehicles, an energy efficient and environmentally friendly transportation system. The PI has been actively recruiting students from different ethnic, racial, gender, geographical, economic and family backgrounds and has been preparing these students for the global market. The PI will also organize visits to local elementary schools and middle schools to host demonstration workshops on fuel cell and other renewable energy sources.
Nguyen - 1518755质子交换膜燃料电池,也称为聚合物电解质膜(PEM)燃料电池,正在开发用于运输、固定燃料电池和便携式燃料电池应用。 PEM 燃料电池将氢气和氧气电化学反应过程中释放的化学能转化为电能,而不是直接燃烧氢气和氧气产生热能。他们的膜组件的结构由阳极和阴极组成,阳极和阴极被含有催化剂的电解质隔开。 氢气流被输送到阳极侧,在那里它被催化分裂成质子和电子。新形成的质子透过聚合物电解质膜到达阴极侧。电子沿着外部电路行进到阴极侧,产生燃料电池的电流输出。同时,一股氧气被输送到阴极侧,氧分子与透过聚合物电解质膜的质子和通过外部电路到达的电子发生反应,形成水分子。这种燃料电池在相对较低的温度下运行,体积小且重量轻,使其成为使用化石燃料作为能源的内燃机的潜在替代品的理想选择。该项目旨在开发更好的质子交换膜燃料电池。质子交换膜燃料电池的高功率密度运行通常受到催化剂层中高液态水饱和度的限制,这是由于添加离子聚合物相以提供三维离子通道的高润湿性所致。到催化剂位点。 在这个 EAGER 项目中,基于氟碳基离子聚合物界面特性的最新发现所产生的假设,提出了一种简单的方法。高相对湿度下的热处理导致聚合物表面具有高比例的磺酸基团和高度的亲水性,而在干燥条件下的热处理导致聚合物表面具有少量的磺酸基团和高度的亲水性。疏水性 PTFE 相的比例非常高。基于这些观察,假设如果位于催化剂层孔中的离子聚合物涂层的外表面可以被制成疏水性,则在催化剂表面产生并通过聚合物涂层扩散到聚合物涂层的任何水/气相界面会成珠并移走,而不会在聚合物涂层上形成层。因此,氧气和氢气可以直接进入离子聚合物相和催化剂表面。如果能够实现这种形态,燃料电池的性能预计将大大提高。为了检验这一假设,提出了两项​​任务:1)验证在干燥或低相对湿度条件下热处理离子聚合物(例如 Nafion)将产生具有永久疏水外表面的聚合物薄膜的假设,并确定热处理方法最适合形成永久疏水外表面的条件; 2) 确认改变膜的外表面润湿特性不会影响聚合物膜内的质子电导率,也不会对聚合物/催化剂界面产生不利影响。如果这种方法成功,它可以改变 PEM 燃料中的水管理电池并导致更高性能、更低成本和更耐用的燃料电池的开发。这可以加速燃料电池动力汽车的商业化,这是一种节能环保的运输系统。 PI一直积极招收来自不同民族、种族、性别、地理、经济和家庭背景的学生,并为这些学生进入全球市场做好准备。 PI还将组织参观当地小学和中学,举办燃料电池和其他可再生能源示范研讨会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Trung Nguyen其他文献

Does inside debt help mitigate agency problems? The case with investment inefficiency and payout policies
内部债务有助于缓解代理问题吗?
  • DOI:
    10.1016/j.frl.2020.101560
  • 发表时间:
    2020-04-27
  • 期刊:
  • 影响因子:
    10.4
  • 作者:
    Asligul Erkan;Trung Nguyen
  • 通讯作者:
    Trung Nguyen
Likelihood-based iterated cubature multi-state-constraint Kalman filter for visual inertial navigation system
用于视觉惯性导航系统的基于似然的迭代体积多状态约束卡尔曼滤波器
Reinforcement learning as a rehearsal for swarm foraging
强化学习作为群体觅食的预演
  • DOI:
    10.1007/s11721-021-00203-8
  • 发表时间:
    2021-09-29
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Trung Nguyen;Bikramjit Banerjee
  • 通讯作者:
    Bikramjit Banerjee
Analysis of Error Distribution in Simple RT and Proactive Volitional Inhibition: Evidence From Warning Signals Induce Automatic EMG Activations
简单 RT 和主动意志抑制中的误差分布分析:警告信号诱导自动肌电图激活的证据
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Jaffard;L. Granjon;A. Benraiss;J. Duque;David Lew;R. Mazzocchio;E. Olivier;R. Ivry;P. Boulinguez;Marion Albares;M. Criaud;C. Wardak;Song Chi;Trung Nguyen;S. Hamed;Ludovica Labruna;Sophie Verset
  • 通讯作者:
    Sophie Verset
Blood-based protein predictors of dementia severity as measured by δ: Replication across biofluids and cohorts
通过 δ 测量的基于血液的痴呆严重程度的蛋白质预测因子:在生物体液和队列中的复制
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Royall;Ram Bishnoi;Raymond F. Palmer;Valory Paul Eveleen Monica Aisha Khaleeq John C. Hemachan Pavlik Massman Darby Rodriguear Ansari DeToledo Re;V. Pavlik;P. Massman;E. Darby;Monica Rodriguear;A. Ansari;J. Detoledo;Hemachandra Reddy;Henrick Wilms;Kim Johnson;Victoria Perez;T. Fairchild;J. Knebl;S. O'Bryant;J. Hall;L. Johnson;R. Barber;Douglas Mains;Lisa Alvarez;M. Cullum;R. Rosenberg;B. Williams;M. Quiceno;J. Reisch;L. Hynan;R. Huebinger;Janet Smith;Trung Nguyen;D. Royall;Raymond F. Palmer;Marsha S Polk;A. Stevens;M. Ory;D. Paydarfar;J. Bertelson;Martin Woon;G. Ayres;Alyssa Aguirre;K. Wilhelmsen;J. Tilson
  • 通讯作者:
    J. Tilson

Trung Nguyen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Trung Nguyen', 18)}}的其他基金

EAGER: High-Energy-Density Storage for Renewable Energy Sources for Environmental Sustainability
EAGER:可再生能源的高能量密度存储,促进环境可持续发展
  • 批准号:
    2024378
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Engineering the Ionic Polymer Phase-Fluid Interface of the PEM Fuel Cell Catalyst Layer for Higher Performance
对 PEM 燃料电池催化剂层的离子聚合物相-流体界面进行工程设计,以获得更高的性能
  • 批准号:
    1803058
  • 财政年份:
    2018
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
MRI: Acquisition of an Advanced X-Ray Photoelectron Spectroscopy for Materials Research
MRI:获取先进的 X 射线光电子能谱用于材料研究
  • 批准号:
    1429727
  • 财政年份:
    2014
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Conference on Massive Energy Storage for the Broader Use of Renewable Energy Sources, June 23-26, 2013, Newport Beach, CA
大规模储能促进可再生能源更广泛应用会议,2013 年 6 月 23-26 日,加利福尼亚州纽波特比奇
  • 批准号:
    1335803
  • 财政年份:
    2013
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
EAGER: Electrical Grid Leveling by Distributed Energy Storage
EAGER:通过分布式储能实现电网均衡
  • 批准号:
    1135368
  • 财政年份:
    2011
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
US-Taiwan Workshops on Materials and Systems Challenges in Electrical Energy Storage
美国-台湾关于电能存储材料和系统挑战的研讨会
  • 批准号:
    1126511
  • 财政年份:
    2011
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
EFRI-RESTOR: Regenerative Hydrogen-Bromine Fuel Cell System for Energy Storage
EFRI-RESTOR:用于储能的再生氢溴燃料电池系统
  • 批准号:
    1038234
  • 财政年份:
    2010
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Water Management in PEM Fuel Cells by Material Engineering
材料工程在质子交换膜燃料电池中的水管理
  • 批准号:
    0651758
  • 财政年份:
    2007
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
SGER: Optimized Catalyst Layer Structure for PEM Fuel Cells
SGER:用于质子交换膜燃料电池的优化催化剂层结构
  • 批准号:
    0341271
  • 财政年份:
    2003
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Spatial and Temporal Behavior in Proton Exchange Membrane Fuel Cells
质子交换膜燃料电池的时空行为
  • 批准号:
    9910923
  • 财政年份:
    2000
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant

相似国自然基金

氧化镓阴阳离子多元合金工程与氧空位电活性抑制研究
  • 批准号:
    62374147
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
工程化细胞外囊泡镁离子递送系统用于肿瘤免疫代谢治疗
  • 批准号:
    32371476
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于柱芳烃超分子主客体识别体系的电解液工程设计及离子传输机制研究
  • 批准号:
    52303283
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
界面离子工程调控钙钛矿异质成核结晶实现高效稳定柔性光伏组件
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
晶体位点工程构筑多级形态过渡金属离子掺杂红色长余辉材料及其发光机制研究
  • 批准号:
    22265024
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Ionic liquid-assisted drug delivery to brain reservoirs for treatment of neuroHIV
离子液体辅助药物输送至脑库治疗神经艾滋病毒
  • 批准号:
    10523303
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
Investigating contributions of late endosomal and lysosomal chloride/proton antiporter dysfunction to neuronal storage
研究晚期内体和溶酶体氯化物/质子逆向转运蛋白功能障碍对神经元储存的影响
  • 批准号:
    10649149
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
Engineering Next-Generation Nanoparticles One Layer at a Time
一次一层地设计下一代纳米粒子
  • 批准号:
    10528938
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
Ionic mechanisms of toluene cerebrovascular actions
甲苯脑血管作用的离子机制
  • 批准号:
    10627927
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
GenSyn: A Cycle for Serial Assembly of Very Large DNA Molecules
GenSyn:非常大的 DNA 分子的串行组装循环
  • 批准号:
    10552680
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了