RI: Small: Knowledge Representation and Reasoning under Uncertainty with Probabilistic Answer Set Programming
RI:小:不确定性下的知识表示和推理与概率答案集编程
基本信息
- 批准号:1526301
- 负责人:
- 金额:$ 34.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Combining logic and probability is an important subject in Artificial Intelligence, and is recently being extensively studied in the area of statistical relational learning, where the main goal of representation is to express probabilistic models in a compact way that reflects the relational structure of the domain and ideally supports efficient learning and inference. However, in comparison with main knowledge representation languages, such languages do not allow natural, elaboration tolerant representation of commonsense knowledge. Currently, there is a big gap between the state of the art languages that are used in knowledge representation and the state of the art languages in which machine learning is done. The success of this project will identify fundamental issues in bridging the gap between the two areas, will produce a uniform framework for both expressive representation and learning, and will contribute to the integration of knowledge representation and machine learning. The outcome of the research will be useful for many applications that require integration of knowledge representation and other areas, such as vision, robotics, and event recognition, where commonsense reasoning has to be applied on uncertain knowledge and data. The software systems developed under this project will be freely available as open source software. The research will involve both graduate and undergraduate students, contributing to a strengthened relationship between education and research. The goal of the project is to design and implement a knowledge representation language that allows elaboration tolerant representation of expressive commonsense knowledge involving logic and probability, which can be efficiently computed by the techniques developed in related areas. The proposed research aims at shifting the current logic-based foundation of answer set programming to a novel foundation that combines logic and probability, and achieving its computation by intelligently adapting and combining the methods from probabilistic reasoning and machine learning. It will build upon the existing works on answer set programming, statistical relational learning, and probabilisitic logic programming. The project will (i) enhance the mathematical foundation of answer set programming to the novel foundation that combines logic and probability. (ii) relate it to other existing approaches in statistical relational learning, Pearl's causal models, and P-Log; (iii) design inference and learning algorithms; (iv) design a high level action language that allows elaboration tolerant representation of probabilistic transition systems; (v) apply probabilistic answer set programming to event recognition; (vi) implement and evaluate involved software systems.
结合逻辑和概率是人工智能中的一个重要主题,最近在统计关系学习领域进行了广泛的研究,在统计关系学习领域,代表性的主要目标是以紧凑的方式表达概率模型,以反映域的关系结构并理想地支持有效的学习和推理。但是,与主要知识表示语言相比,这种语言不允许自然,阐述常识性知识。当前,在知识表示中使用的艺术语言状态和在其中完成机器学习的最先进的语言状态之间存在很大的差距。 该项目的成功将确定在弥合两个领域之间差距的基本问题,将为表达性代表和学习提供统一的框架,并将有助于知识表示和机器学习的整合。该研究的结果将对许多需要集成知识表示和其他领域的应用程序,例如视觉,机器人技术和事件识别,在这些应用程序中,必须将常识性推理应用于不确定的知识和数据。该项目下开发的软件系统将作为开源软件免费提供。这项研究将涉及研究生和本科生,从而有助于教育与研究之间的关系。该项目的目的是设计和实施一种知识表示语言,该语言允许宽容允许涉及逻辑和概率的表达常识性知识表示,这可以通过相关领域中开发的技术有效地计算出来。 拟议的研究旨在将当前基于逻辑的答案集编程基础转移到结合逻辑和概率的新颖基础上,并通过智能适应和结合概率推理和机器学习的方法来实现其计算。它将基于答案集编程,统计关系学习和概率逻辑编程的现有作品。 该项目将(i)增强答案集编程的数学基础,以结合逻辑和概率的新颖基础。 (ii)将其与统计关系学习,Pearl的因果模型和P-LOG中的其他现有方法相关联; (iii)设计推理和学习算法; (iv)设计一种高级动作语言,允许对概率过渡系统的宽容耐受性表示; (v)将概率答案集编程应用于事件识别; (vi)实施并评估涉及的软件系统。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Implementing Logic Programs with Ordered Disjunction Using asprin
使用 asprin 实现具有有序析取的逻辑程序
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Lee, Joohyung;Yang, Zhun
- 通讯作者:Yang, Zhun
A Model-Based Approach to Visual Reasoning on CNLVR Dataset
CNLVR 数据集上基于模型的视觉推理方法
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Sampat, Shailaja;Lee, Joohyung
- 通讯作者:Lee, Joohyung
Computing Logic Programs with Ordered Disjunction Using asprin
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Joohyung Lee;Zhun Yang
- 通讯作者:Joohyung Lee;Zhun Yang
Weight Learning in a Probabilistic Extension of Answer Set Programs
答案集程序概率扩展中的权重学习
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Lee, Joohyung;Wang, Yi
- 通讯作者:Wang, Yi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joohyung Lee其他文献
Multi-homing in Heterogeneous Wireless Access Networks: A Stackelberg Game for Pricing
- DOI:
10.3837/tiis.2018.05.004 - 发表时间:
2018-05 - 期刊:
- 影响因子:0
- 作者:
Joohyung Lee - 通讯作者:
Joohyung Lee
Potentiation of cholinergic transmission in the rat hippocampus by angiotensin IV and LVV-hemorphin-7
血管紧张素 IV 和 LVV-hemorphin-7 增强大鼠海马胆碱能传递
- DOI:
10.1016/s0028-3908(00)00188-x - 发表时间:
2001 - 期刊:
- 影响因子:4.7
- 作者:
Joohyung Lee;S. Chai;F. Mendelsohn;M. Morris;A. Allen - 通讯作者:
A. Allen
Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence Functional Stable Model Semantics and Answer Set Programming Modulo Theories
第二十三届人工智能函数稳定模型语义与答案集规划模理论国际联合会议论文集
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Joohyung Lee;Yunsong Meng;Yi Wang - 通讯作者:
Yi Wang
Charge carriers created by interaction of a nonionic surfactant with water in a nonpolar medium
非离子表面活性剂与水在非极性介质中相互作用产生电荷载体
- DOI:
10.1016/j.colsurfa.2018.06.050 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Joohyung Lee - 通讯作者:
Joohyung Lee
Large-scale assembly of carbon nanotube-based flexible circuits for DNA sensors
用于 DNA 传感器的基于碳纳米管的柔性电路的大规模组装
- DOI:
10.1088/0957-4484/19/13/135305 - 发表时间:
2008 - 期刊:
- 影响因子:3.5
- 作者:
Juwan Kang;Joohyung Lee;T. H. Kim;June;M. Seong;Seunghun Hong - 通讯作者:
Seunghun Hong
Joohyung Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joohyung Lee', 18)}}的其他基金
RI: Small: Embracing Deep Neural Networks into Probabilistic Answer Set Programming
RI:小:将深度神经网络融入概率答案集编程
- 批准号:
2006747 - 财政年份:2020
- 资助金额:
$ 34.28万 - 项目类别:
Standard Grant
RI: Small: Expressive Reasoning and Learning about Actions under Uncertainty via Probabilistic Extension of Action Language
RI:小:通过动作语言的概率扩展来表达推理和学习不确定性下的动作
- 批准号:
1815337 - 财政年份:2018
- 资助金额:
$ 34.28万 - 项目类别:
Standard Grant
Student Travel Grant for 2018 Principles of Knowledge Representation and Reasoning Conference and Doctoral Consortium
2018年知识表示与推理原理会议及博士联盟学生旅费补助
- 批准号:
1838259 - 财政年份:2018
- 资助金额:
$ 34.28万 - 项目类别:
Standard Grant
RI: Small: Answer Set Programming Modulo Theories
RI:小:答案集编程模理论
- 批准号:
1319794 - 财政年份:2013
- 资助金额:
$ 34.28万 - 项目类别:
Standard Grant
RI: Small: Enhancing Nonmonotonic Declarative Knowledge Representation and Reasoning by Merging Answer Set Programming with Other Computing Paradigms
RI:小:通过将答案集编程与其他计算范式合并来增强非单调声明性知识表示和推理
- 批准号:
0916116 - 财政年份:2009
- 资助金额:
$ 34.28万 - 项目类别:
Standard Grant
SGER: Grounding-Independent Reasoning in Answer Set Programming
SGER:答案集编程中与基础无关的推理
- 批准号:
0839821 - 财政年份:2008
- 资助金额:
$ 34.28万 - 项目类别:
Standard Grant
相似国自然基金
靶向Treg-FOXP3小分子抑制剂的筛选及其在肺癌免疫治疗中的作用和机制研究
- 批准号:32370966
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
化学小分子激活YAP诱导染色质可塑性促进心脏祖细胞重编程的表观遗传机制研究
- 批准号:82304478
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
靶向小胶质细胞的仿生甘草酸纳米颗粒构建及作用机制研究:脓毒症相关性脑病的治疗新策略
- 批准号:82302422
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
HMGB1/TLR4/Cathepsin B途径介导的小胶质细胞焦亡在新生大鼠缺氧缺血脑病中的作用与机制
- 批准号:82371712
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
小分子无半胱氨酸蛋白调控生防真菌杀虫活性的作用与机理
- 批准号:32372613
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Travel: RI: Small: Student Travel Grant for 20th International Conference on Principles of Knowledge Representation and Reasoning and Doctoral Consortium
旅费:RI:小额:第 20 届知识表示和推理原理及博士联盟国际会议学生旅费补助
- 批准号:
2328173 - 财政年份:2023
- 资助金额:
$ 34.28万 - 项目类别:
Standard Grant
RI: Small: Extracting Knowledge from Language Models for Decision Making
RI:小型:从语言模型中提取知识以进行决策
- 批准号:
2246811 - 财政年份:2023
- 资助金额:
$ 34.28万 - 项目类别:
Standard Grant
CompCog: RI: Small: Human-like semantic grammar induction through knowledge distillation from pre-trained language models
CompCog:RI:Small:通过预训练语言模型的知识蒸馏进行类人语义语法归纳
- 批准号:
2313140 - 财政年份:2023
- 资助金额:
$ 34.28万 - 项目类别:
Standard Grant
RI: Small: Extracting and Representing Commonsense Knowledge Using Language Models
RI:小:使用语言模型提取和表示常识知识
- 批准号:
2006851 - 财政年份:2020
- 资助金额:
$ 34.28万 - 项目类别:
Standard Grant
RI: Small: Modeling Multiple Modalities for Knowledge-Base Construction
RI:小型:知识库构建的多种模式建模
- 批准号:
1817183 - 财政年份:2018
- 资助金额:
$ 34.28万 - 项目类别:
Standard Grant