Photon Temporal Modes as a Quantum Information Resource

作为量子信息资源的光子时间模式

基本信息

  • 批准号:
    1521466
  • 负责人:
  • 金额:
    $ 47.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

Quantum information science (QIS) promises means for storing, transmitting, and processing information in ways not achievable using conventional (classical-physics-based) information technology. Success in QIS could revolutionize both technology and science through new computation and communication capabilities. Major breakthroughs are still needed before these can become reality. It is generally recognized that the most powerful quantum computation will take place using material systems (atoms or electrons). In contrast, quantum communication across a network (a "Quantum Internet") will take place using light (photons). In addition, specialized quantum-information processing will take place using light or a combination of light and interacting atoms, as needed, for example, to construct signal repeaters for extending the range of quantum communication over longer distances. This project will develop a radical, yet practical, new approach to using photons to encode quantum information.Photons in a light beam have four distinct properties, any of which could be used to encode quantum-information: polarization (e.g., vertical or horizontal), two-dimensions of beam profile (spatial shape), and temporal shape (variation in time of brightness during a light pulse). In order to fully utilize light for transmitting information in a quantum network, it is necessary to be able to manipulate and sort a beam of light according to the states associated with each of these properties. While polarization and spatial beam profiles have been previously developed as means for encoding quantum information on photons, the temporal shape of photons has gone largely unrecognized as an important potential technique. The project endeavors to complete the "tool kit" for photon-based QIS by developing means to use photon temporal shape to encode information. This approach has predicted benefits in that 1) it allows more than one bit of information to be encoded on a single photon, 2) the encoding method is robust against the alterations of light that occur while traveling in a long optical fiber, and 3) the method nicely interfaces with atom-based quantum-light memories, which will be used in the future construction of a Quantum Internet. Controlling quantum systems is of broad interest in science and information technology, metrology, quantum chemistry, and nano-mechanics. Optical technology and quantum-optics-based information science offer excellent opportunities to integrate research with science education. To improve the quality of general science education for non-science majors, the P.I. cofounded in 2010 the Science Literacy Program (SLP) at the University of Oregon, and serves as its Co-Director. The SLP has provided mentored instructional opportunities to many graduate students and undergraduate science majors serving as co-instructors in science literacy courses. He developed and taught an SLP course, Quantum Physics for Everyone, which presented quantum information science to non-science majors, using active learning techniques to engage the students. He will continue serving as SLP Co-Director.From a more technical perspective, the project will develop the idea that in QIS, temporal modes (TMs) of photons, and more generally light fields, should be viewed on an equal footing with polarization and transverse modes. TMs are wave-packet modes that have the same carrier frequency, polarization, and transverse spatial mode, and occupy the same time bin, but yet are temporal orthogonal. To enable the development of TMs for use as qubits and qudits, the central needed technology is the quantum pulse gate (QPG), which will implement a near-100% efficient spatial sorting of field-orthogonal TMs. Based on their recently proposed method of temporal-mode interferometry (TMI), the researchers will demonstrate the elements of a complete quantum information framework that employs field orthogonality of single-photon temporal modes. The three requirements - generation of resource states, the targeted and efficient manipulation of TMs, and their detection and characterization - can be fulfilled with current technology. In particular, the researchers will study, experimentally and theoretically, means for implementing single-qubit quantum-logic operations (Pauli-X, -Y, and -Z gates; and phase-shift gate) using the quantum pulse gate device as the basic building block. They will also demonstrate that the QPG can act as a real-time controllable switch that is temporal-mode selective, by varying a phase shift internal to the device. In addition, they will demonstrate means for verifying the fidelity of such gate operations, using a new form of quantum-state tomography, which can determine the quantum state directly in a TM basis.
量子信息科学(QIS)有望使用常规(基于经典的)信息技术以无法实现的方式存储,传输和处理信息。 QIS的成功可以通过新的计算和通信能力来彻底改变技术和科学。在这些突破成为现实之前,仍然需要重大突破。人们普遍认为,最强大的量子计算将使用材料系统(原子或电子)进行。相比之下,将使用光线(光子)进行跨网络(“量子互联网”)的量子通信。此外,专门的量子信息处理将使用光或光和相互作用原子的组合进行,例如,以构建信号折扣,以将量子通信范围扩展到更长的距离上。该项目将开发一种使用光子来编码量子信息的激进,但实用的新方法。光束中的光子具有四个不同的属性,可以用来编码量子信息:极化(例如,垂直或水平或水平),光束轮廓的二维(空间形状)(空间形状)和亮度的变化。为了充分利用光在量子网络中传输信息,有必要根据与这些属性相关的状态操纵和分类光束。虽然以前已经开发出极化和空间束轮廓作为编码光子上量子信息的手段,但光子的时间形状在很大程度上未被认为是重要的潜在技术。该项目努力通过开发使用光子时间形状来编码信息的方法来完成基于光子的QI的“工具套件”。这种方法预测了这一点的好处,因为1)它允许在单个光子上编码多个信息,2)编码方法与在长光纤中行驶时发生的光的变化以及3)与基于原子基于原子的量子宽度记忆的方法的变化是可靠的,该方法将在未来的量子互联网上使用。 控制量子系统对科学和信息技术,计量学,量子化学和纳米力学具有广泛的兴趣。基于光学技术和基于量子的信息科学为将研究与科学教育融为一体提供了绝佳的机会。为了提高非科学专业的一般科学教育质量,P.I。共同创立于2010年,俄勒冈大学的科学素养计划(SLP),并担任其联合导演。 SLP为许多研究生和本科科学专业的专业专业提供了指导的教学机会,并在科学扫盲课程中担任共同教师。他为每个人开发并教授了SLP课程,即量子物理学,该课程将量子信息科学介绍给非科学专业的专业,并使用活跃的学习技巧来吸引学生。他将继续担任SLP联合导演。从更具技术性的角度来看,该项目将提出这样的想法,即在QIS,光子的时间模式(TMS)以及更一般的光场应与极化和横向模式相等地观察。 TMS是具有相同载体频率,极化和横向空间模式的波动模式,并且占据了同一时间bin,但却是时间正交。为了使TMS的开发用作Qubits和Qudits,所需的中央技术是量子脉冲门(QPG),该技术将实施接近100%的效率空间 - 正交TMS。根据他们最近提出的时间模式干涉法(TMI)的方法,研究人员将演示使用单光子时间模式的现场正交性的完整量子信息框架的元素。当前技术可以满足三种要求 - 资源状态的产生,TMS的有针对性和高效操纵及其检测和表征。特别是,研究人员将在实验和理论上研究使用量子脉冲门设备作为基本构建块,用于实施单量量子逻辑操作(Pauli-X,-Y和-Z Gates; Pauli-X,-Y和-Z Gates;和相移门)。他们还将证明QPG可以通过改变设备内部的相移,充当时间模式选择性的实时可控开关。此外,他们将使用一种新形式的量子状态断层扫描形式来验证验证此类门操作的保真度的手段,该形式可以直接以TM为基础确定量子状态。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Raymer其他文献

Michael Raymer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Raymer', 18)}}的其他基金

Quantum Leap Grantees Meeting 2020
2020 年量子飞跃受资助者会议
  • 批准号:
    2041809
  • 财政年份:
    2020
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
RAISE-TAQS: Quantum Advantage of Broadband Entangled Photon Pairs in Spectroscopy and Metrology
RAISE-TAQS:宽带纠缠光子对在光谱学和计量学中的量子优势
  • 批准号:
    1839216
  • 财政年份:
    2018
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
Photon Temporal Modes as a Quantum Information Resource
作为量子信息资源的光子时间模式
  • 批准号:
    1820789
  • 财政年份:
    2018
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
Fundamental Quantum Optics in Hollow-Core Photonic Crystal Fibers
空心光子晶体光纤中的基础量子光学
  • 批准号:
    1406354
  • 财政年份:
    2014
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
Fundamental Quantum Optics in Hollow-Core Photonic Crystal Fibers
空心光子晶体光纤中的基础量子光学
  • 批准号:
    1068865
  • 财政年份:
    2011
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
Engineering and controlling photon states in photonic crystal fiber
光子晶体光纤中光子态的工程和控制
  • 批准号:
    1101811
  • 财政年份:
    2011
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
Engineering and controlling photon states in photonic crystal fiber
光子晶体光纤中光子态的工程和控制
  • 批准号:
    0802109
  • 财政年份:
    2008
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
Quantum Coherence and Entanglement with Atomic, Molecular and Optical Systems
原子、分子和光学系统的量子相干和纠缠
  • 批准号:
    0757818
  • 财政年份:
    2008
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
PIF: Spatial-Temporal Control of Photons for Quantum Information Processing
PIF:用于量子信息处理的光子时空控制
  • 批准号:
    0554842
  • 财政年份:
    2006
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
Strong-Coupling of Quantum Dots and Microcavities for Efficient Single Photon Sources and Quantum Logic
量子点和微腔的强耦合,用于高效的单光子源和量子逻辑
  • 批准号:
    0621723
  • 财政年份:
    2006
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

CCK2R通过调控M通道及SCN8A钠通道改变慢性颞叶癫痫大鼠放电模式的机制研究
  • 批准号:
    82201604
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
CCK2R通过调控M通道及SCN8A钠通道改变慢性颞叶癫痫大鼠放电模式的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
颞叶癫痫全脑结构和功能连接模式的研究
  • 批准号:
    81471251
  • 批准年份:
    2014
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目
人类腹侧枕颞皮质模块化和分布式加工的磁共振成像研究
  • 批准号:
    31371134
  • 批准年份:
    2013
  • 资助金额:
    85.0 万元
  • 项目类别:
    面上项目
颞叶癫痫齿状回-海马CA3回路神经元集群电活动模式和rTMS神经调控的研究
  • 批准号:
    81071044
  • 批准年份:
    2010
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目

相似海外基金

Exploring ultrafast space-time imaging principle using temporal-modes of lights
利用光的时间模式探索超快时空成像原理
  • 批准号:
    23K17907
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Temporal-Spatial Control of Electric-Driven Water Facilities for Renewable Energy Management under Combinatorial Operation Modes of Contingency Response and Nexus
应急响应与联动组合运行模式下可再生能源管理电驱动水利设施时空控制
  • 批准号:
    2124849
  • 财政年份:
    2021
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
Brain Mechanisms underlying skilled reading in deaf and hard of hearing (DHH) children with different communication modes
不同沟通模式的聋哑和听力障碍儿童熟练阅读的大脑机制
  • 批准号:
    10314482
  • 财政年份:
    2019
  • 资助金额:
    $ 47.5万
  • 项目类别:
Brain Mechanisms underlying skilled reading in deaf and hard of hearing (DHH) children with different communication modes
不同沟通模式的聋哑和听力障碍儿童熟练阅读的大脑机制
  • 批准号:
    10237151
  • 财政年份:
    2019
  • 资助金额:
    $ 47.5万
  • 项目类别:
Brain Mechanisms underlying skilled reading in deaf and hard of hearing (DHH) children with different communication modes
不同沟通模式的聋哑和听力障碍儿童熟练阅读的大脑机制
  • 批准号:
    10690811
  • 财政年份:
    2019
  • 资助金额:
    $ 47.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了