Fundamental Quantum Optics in Hollow-Core Photonic Crystal Fibers
空心光子晶体光纤中的基础量子光学
基本信息
- 批准号:1406354
- 负责人:
- 金额:$ 45.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-15 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project studies an aspect of quantum physics, which is the study of the natural world at its most fundamental level. Experiments with elementary objects such as photons (constituents of light) or electrons (constituents of atoms) has led over the decades to many new technologies, including computers and lasers. The next generation of technology (called quantum technology), might create the means for ensuring perfect security of information on the internet, as well as computers that can solve problems unsolvable using today's hardware. Light, as a carrier of information, plays important roles in such technologies, so the ability to control light more and more finely is crucial for future success. The present study addresses the so-called nonlinear interactions of light that occurs in some substances or materials. For example, when very intense light of a certain color travels through a long solid-glass fiber, new colors can be created by nonlinear interactions. Such color-changing interactions have many uses, both in scientific research and in technological applications. A problem exists though, called "Raman scattering," which leads to the production of many unwanted colors in addition to those desired. In this type of scattering, energy is deposited in the vibrations of molecules making up the medium. These unwanted, randomly produced colors can degrade the purity of the light, so a means to avoid their production is an important goal. The present study is developing such a means by replacing solid-glass fibers with hollow glass fibers filled with xenon gas at extremely high pressure. Because xenon is a "noble gas" it does not form molecules, and so the Raman light scattering mechanism is absent. Optical physics and light-based information science (photonics) offer excellent opportunities to integrate research with science education.From a more technical perspective, the project addresses the need in quantum optics research for attaining ideal interactions for generating and manipulating quantum-mechanical states of light, including single photons, entangled photons, squeezed states, and entangled states, as well as for performing quantum gate operations and implementing quantum communication methods. Toward these goals, this experimental project studies optical parametric processes using high-density atomic xenon gas confined in hollow-core photonic-crystal fibers (HC-PCF). Such a medium will open up the study of fundamental quantum optical processes without the often-deleterious presence of Raman scattering. Elimination of Raman scattering removes spontaneous photon emission background signals in single-photon sources, and removes Raman-induced frequency shifting in optical soliton propagation, which limits the degree of quantum noise squeezing that can be achieved. It also decreases pump-laser degradation. Such a system could lead to well-controlled nonlinear optical processes for quantum information schemes. Developing the means to manipulate and control the states of quantum systems is of broad interest in science and in quantum information technology, metrology, quantum chemistry, nano-mechanics, etc. The topic brings together quantum opticians with optical device scientists and material scientists.
该项目研究了量子物理学的一个方面,这是对自然界最基本水平的研究。使用基本物体(如光子的成分)或电子(原子成分)进行的基本对象的实验已导致数十年来,包括许多新技术,包括计算机和激光器。下一代技术(称为量子技术)可能会创造出确保Internet上信息的完美安全以及可以使用当今硬件无法解决问题的计算机的手段。作为信息的载体,Light在此类技术中起着重要的作用,因此控制光线越来越精细的能力对于未来的成功至关重要。本研究涉及某些物质或材料中发生的所谓的非线性相互作用。例如,当某种颜色的非常强烈的光线通过长固体玻璃纤维传播时,可以通过非线性互动来创建新的颜色。这种变色的相互作用在科学研究和技术应用中都有多种用途。但是,存在一个问题,称为“拉曼散射”,除了所需的颜色外,还会导致许多不需要的颜色。 在这种类型的散射中,能量沉积在组成培养基的分子的振动中。这些不需要的,随机生产的颜色会降低光的纯度,因此避免生产的一种手段是一个重要的目标。本研究正在通过在极高的压力下用空心玻璃纤维代替固体玻璃纤维来开发这种手段。由于氙气是一种“贵重气体”,因此不形成分子,因此不存在拉曼光散射机制。光学物理和基于光的信息科学(光子学)为将研究与科学教育融为一体提供了极好的机会。从更技术的角度来看,该项目解决了量子光学研究中的需求,以实现理想的相互作用,以生成和操纵光的量子力学状态,包括单光子,包括单个光子,包括纠缠的光子,Queezed State,Queezed States,squeezed State,and and venter的范围,并实现量的量子,并实现了操作,并实现了操作量,并实现了操作。朝向这些目标,该实验项目使用限制在空心光子晶体纤维(HC-PCF)中的高密度原子氙气(HC-PCF)研究光学参数过程。这样的介质将开辟基本量子光学过程的研究,而不受拉曼散射的存在。消除拉曼散射可以消除单光子源中自发的光子发射背景信号,并消除了光学孤子传播中拉曼引起的频率转移,这限制了可以实现的量子噪声的程度。它还降低了泵激光降解。这样的系统可能会导致量子信息方案的良好控制的非线性光学过程。开发操纵和控制量子系统状态的手段在科学和量子信息技术,计量学,量子化学,纳米力学等方面具有广泛的兴趣。该主题将量子光学师与光学设备科学家和物质科学家汇集在一起。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Raymer其他文献
Michael Raymer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Raymer', 18)}}的其他基金
Quantum Leap Grantees Meeting 2020
2020 年量子飞跃受资助者会议
- 批准号:
2041809 - 财政年份:2020
- 资助金额:
$ 45.43万 - 项目类别:
Standard Grant
RAISE-TAQS: Quantum Advantage of Broadband Entangled Photon Pairs in Spectroscopy and Metrology
RAISE-TAQS:宽带纠缠光子对在光谱学和计量学中的量子优势
- 批准号:
1839216 - 财政年份:2018
- 资助金额:
$ 45.43万 - 项目类别:
Standard Grant
Photon Temporal Modes as a Quantum Information Resource
作为量子信息资源的光子时间模式
- 批准号:
1820789 - 财政年份:2018
- 资助金额:
$ 45.43万 - 项目类别:
Standard Grant
Photon Temporal Modes as a Quantum Information Resource
作为量子信息资源的光子时间模式
- 批准号:
1521466 - 财政年份:2015
- 资助金额:
$ 45.43万 - 项目类别:
Continuing Grant
Fundamental Quantum Optics in Hollow-Core Photonic Crystal Fibers
空心光子晶体光纤中的基础量子光学
- 批准号:
1068865 - 财政年份:2011
- 资助金额:
$ 45.43万 - 项目类别:
Continuing Grant
Engineering and controlling photon states in photonic crystal fiber
光子晶体光纤中光子态的工程和控制
- 批准号:
1101811 - 财政年份:2011
- 资助金额:
$ 45.43万 - 项目类别:
Standard Grant
Engineering and controlling photon states in photonic crystal fiber
光子晶体光纤中光子态的工程和控制
- 批准号:
0802109 - 财政年份:2008
- 资助金额:
$ 45.43万 - 项目类别:
Standard Grant
Quantum Coherence and Entanglement with Atomic, Molecular and Optical Systems
原子、分子和光学系统的量子相干和纠缠
- 批准号:
0757818 - 财政年份:2008
- 资助金额:
$ 45.43万 - 项目类别:
Continuing Grant
PIF: Spatial-Temporal Control of Photons for Quantum Information Processing
PIF:用于量子信息处理的光子时空控制
- 批准号:
0554842 - 财政年份:2006
- 资助金额:
$ 45.43万 - 项目类别:
Continuing Grant
Strong-Coupling of Quantum Dots and Microcavities for Efficient Single Photon Sources and Quantum Logic
量子点和微腔的强耦合,用于高效的单光子源和量子逻辑
- 批准号:
0621723 - 财政年份:2006
- 资助金额:
$ 45.43万 - 项目类别:
Continuing Grant
相似国自然基金
原子-微纳波导系统中的非厄米非线性与量子光学效应研究
- 批准号:12374303
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
量子点光学膜的原位动态高光谱监测与主动学习优化
- 批准号:22305015
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
光与物质相互作用模型中A平方问题及其量子相变研究
- 批准号:12305009
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于里德堡单光子源阵列的量子光学研究
- 批准号:12374329
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
自陷域激子量子点能带工程及其光学性质研究
- 批准号:22371090
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Quantum Optics and Optomechanics: From Fundamental Tests To Quantum Tools of the Future
量子光学和光机械:从基础测试到未来的量子工具
- 批准号:
2308969 - 财政年份:2023
- 资助金额:
$ 45.43万 - 项目类别:
Standard Grant
Rapid and high-contrast photothermal microscopy with a novel tunable ZGP source
具有新型可调谐 ZGP 光源的快速高对比度光热显微镜
- 批准号:
10600781 - 财政年份:2023
- 资助金额:
$ 45.43万 - 项目类别:
Fundamental technologies for scalable photonic quantum information processing based on nonlinear optics
基于非线性光学的可扩展光子量子信息处理基础技术
- 批准号:
20H01839 - 财政年份:2020
- 资助金额:
$ 45.43万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Fundamental studies on quantum beam-induced reaction processes under extreme conditions for establishing LWR water chemistry
极端条件下量子束诱导反应过程的基础研究,建立轻水堆水化学
- 批准号:
20H02667 - 财政年份:2020
- 资助金额:
$ 45.43万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Nanopore-based multi-target analysis of Zika virus infection
基于纳米孔的寨卡病毒感染多靶点分析
- 批准号:
10181749 - 财政年份:2019
- 资助金额:
$ 45.43万 - 项目类别: