Geometry of Deformation and Moduli Spaces of Complex Manifolds

复流形的变形几何和模空间

基本信息

  • 批准号:
    1510216
  • 负责人:
  • 金额:
    $ 42.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

AbstractAward: DMS 1510216, Principal Investigator: Kefeng LiuDeformation theory, moduli spaces and modular forms are fundamental to many subjects of mathematics and physics from geometry, topology, algebraic geometry, number theory to theoretical physics like string theory and cosmology. Many deep results in mathematics and string theory crucially rely on moduli spaces, which describe large families of geometric structures within a related geometric space, which is sometimes larger and less directly defined than the original geometry. A simple example is the collection of isometry classes of metric structures on a circle - these are determined by the circumference of the circle and so correspond to the open line of all positive real numbers; in this example a deformation would be an expansion or contraction of one circle to another of larger or smaller circumference. Understanding of deformations and moduli spaces of projective manifolds from global geometric point of view will reveal deep connections among geometry, algebra and physics, will have fundamental impacts in many research fields in mathematics and physics.The principal investigator will study the geometric and topological structures of the deformation theory, Teichmuller and moduli spaces of projective manifolds, and the modularity of certain generating series of the dimension of the tautological rings on the moduli spaces of Riemann surfaces. More precisely, the PI will study the following three important problems: (1) using the new formulas and iteration method discovered by the PI and collaborators to systemically study global deformation theory and prove deformation invariance of the dimension of pluricanonical sections of Kahler manifolds as conjectured by Siu by explicit geometric constructions; (2) proving a conjecture of Griffiths, which asserts the existence of simultaneous uniformization of all the periods for a family of projective manifolds; (3) exploring a striking relation discovered by the PI and Hao Xu between the Ramanujan mock theta-function and the dimensions of the tautological ring of moduli spaces of Riemann surfaces. In carrying out the projects the PI will train several young students and postdoctors to conduct research in these projects through collaboration, seminars, and lectures.
摘要奖:DMS 1510216,首席研究员:刘克峰变形理论、模空间和模形式是数学和物理许多学科的基础,从几何、拓扑、代数几何、数论到弦论和宇宙学等理论物理。数学和弦理论中的许多深层次结果关键依赖于模空间,模空间描述了相关几何空间内的大族几何结构,有时比原始几何更大且不太直接定义。一个简单的例子是圆上度量结构的等距类的集合 - 这些是由圆的周长决定的,因此对应于所有正实数的开线;在此示例中,变形是一个圆向更大或更小周长的另一个圆的膨胀或收缩。 从全局几何角度理解射影流形的变形和模空间将揭示几何、代数和物理学之间的深刻联系,将对数学和物理的许多研究领域产生根本性影响。首席研究员将研究射影流形的几何和拓扑结构变形理论、Teichmuller 和射影流形模空间,以及黎曼曲面模空间上同义反复环维数的某些生成级数的模性。更准确地说,课题组将研究以下三个重要问题:(1)利用课题组和合作者发现的新公式和迭代方法,系统研究全局变形理论,并证明猜想的卡勒流形多规范截面维数的变形不变性由 Siu 通过明确的几何构造; (2) 证明格里菲斯猜想,该猜想断言射影流形族的所有周期同时一致化的存在; (3) 探索 PI 和徐浩发现的拉马努金模拟 theta 函数与黎曼曲面模空间同义反复环维数之间的惊人关系。在实施这些项目的过程中,PI 将培训几名年轻学生和博士后,通过合作、研讨会和讲座的方式开展这些项目的研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kefeng Liu其他文献

GROUP TOPOLOGIES ON AUTOMORPHISM GROUPS OF HOMOGENEOUS STRUCTURES
齐次结构自同构群的群拓扑
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Z. A. G. Hadernezhad;DE Javier;L. G. Onzalez;Matthias Aschenbrenner;Paul Balmer;Vyjayanthi Chari;Atsushi Ichino;Robert Lipshitz;Kefeng Liu;Dimitri Shlyakhtenko;Paul Yang;Ruixiang Zhang
  • 通讯作者:
    Ruixiang Zhang
A ug 2 00 4 A MATHEMATICAL THEORY OF THE TOPOLOGICAL VERTEX
A ug 2 00 4 拓扑顶点的数学理论
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Li Jun;Chiu;Kefeng Liu;Jian Zhou
  • 通讯作者:
    Jian Zhou
Genome-Wide Comparative Analyses of Pigmentation Genes in Four Fish Species Provides Insights on Fish Skin Color Patterning
对四种鱼类色素沉着基因的全基因组比较分析为鱼类肤色模式提供了见解
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lei Jia;Na Zhao;Xiaoxu He;K. Peng;Kefeng Liu;Bo Zhang
  • 通讯作者:
    Bo Zhang
ZNF 280 B promotes the growth of gastric cancer in vitro and in vivo
ZNF 280 B 在体外和体内促进胃癌生长
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jing;Zhengxu Yang;Xiao;G. Yao;An Yanhui;Wei Wang;Yonggang Fan;Chao Zeng;Kefeng Liu
  • 通讯作者:
    Kefeng Liu
Logarithmic vanishing theorems for effective q-ample divisors
有效 q 充足除数的对数消失定理
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kefeng Liu;Xueyuan Wan;Xiaokui Yang
  • 通讯作者:
    Xiaokui Yang

Kefeng Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kefeng Liu', 18)}}的其他基金

GEOMETRY AND TOPOLOGY OF THE MODULI SPACES OF RIEMANN SURFACES AND CALABI-YAU MANIFOLDS
黎曼曲面和卡拉比-丘流形模空间的几何和拓扑
  • 批准号:
    1007053
  • 财政年份:
    2010
  • 资助金额:
    $ 42.6万
  • 项目类别:
    Continuing Grant
LOCALIZATION, STRING DUALITY AND MODULI SPACES
定域化、弦对偶性和模空间
  • 批准号:
    0705284
  • 财政年份:
    2007
  • 资助金额:
    $ 42.6万
  • 项目类别:
    Continuing Grant
Strings 2006 Conference
2006年弦乐会议
  • 批准号:
    0628944
  • 财政年份:
    2006
  • 资助金额:
    $ 42.6万
  • 项目类别:
    Standard Grant
Mathematical Aspects of String Duality
弦对偶性的数学方面
  • 批准号:
    0405117
  • 财政年份:
    2004
  • 资助金额:
    $ 42.6万
  • 项目类别:
    Standard Grant
Geometry and Topology of Counting Curves in Projective Manifolds
射影流形中计数曲线的几何和拓扑
  • 批准号:
    0196544
  • 财政年份:
    2001
  • 资助金额:
    $ 42.6万
  • 项目类别:
    Standard Grant
Geometry and Topology of Counting Curves in Projective Manifolds
射影流形中计数曲线的几何和拓扑
  • 批准号:
    0072182
  • 财政年份:
    2000
  • 资助金额:
    $ 42.6万
  • 项目类别:
    Standard Grant
Applications of Modular Invariance in Geometry and Topology
模不变性在几何和拓扑中的应用
  • 批准号:
    9803234
  • 财政年份:
    1998
  • 资助金额:
    $ 42.6万
  • 项目类别:
    Standard Grant

相似国自然基金

基于液晶弹性体纤维的针织结构致动器可控构筑与响应形变机理研究
  • 批准号:
    52303147
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
排土场含水性和介电特性对SAR信号影响及InSAR形变监测方法研究
  • 批准号:
    52304168
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
北斗/GNSS坐标时序系统偏差辨识及瞬态地壳形变精密建模
  • 批准号:
    42364002
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
对质量形变SU(N)超对称Yang-Mills理论在R³×S¹流形上禁闭性质的非微扰研究
  • 批准号:
    12305079
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
重载铁路桥梁视觉测量全局位移修正模型构建及高精度形变预测研究
  • 批准号:
    52308323
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

moduli space of connections and the generalized isomonodromic deformation
连接模空间和广义等单向变形
  • 批准号:
    19K03422
  • 财政年份:
    2019
  • 资助金额:
    $ 42.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Interactions between Moduli Spaces, Non-Commutative Algebra, and Deformation Theory.
模空间、非交换代数和变形理论之间的相互作用。
  • 批准号:
    EP/M017516/2
  • 财政年份:
    2016
  • 资助金额:
    $ 42.6万
  • 项目类别:
    Fellowship
Interactions between Moduli Spaces, Non-Commutative Algebra, and Deformation Theory.
模空间、非交换代数和变形理论之间的相互作用。
  • 批准号:
    EP/M017516/1
  • 财政年份:
    2015
  • 资助金额:
    $ 42.6万
  • 项目类别:
    Fellowship
Development of seismic design method of liquid storage tanks considering combined effects of out-of-round deformation of the tank shell and partial uplift of the tank bottom plate
考虑罐体不圆变形和罐底板局部抬升共同影响的液体储罐抗震设计方法研究
  • 批准号:
    26289056
  • 财政年份:
    2014
  • 资助金额:
    $ 42.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Permanent deformation characteristics and deterioration of permeability function of porous multi-layered ground
多孔多层地基永久变形特征及渗透函数恶化
  • 批准号:
    22560495
  • 财政年份:
    2010
  • 资助金额:
    $ 42.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了