Distal Residues in Enzyme Catalysis and Protein Design
酶催化和蛋白质设计中的远端残基
基本信息
- 批准号:1517290
- 负责人:
- 金额:$ 75.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Title: Distal Residues in Enzyme Catalysis and Protein DesignEnzyme engineering -the capability to design proteins to act as catalysts for particular, desired chemical reactions- is currently in its very early stages. This project seeks to develop design principles for enzyme engineering, using properties of the protein structure that can be computed. This project builds on very recent discoveries that reveal new information about how nature builds the catalytic center of a protein molecule, wherein multiple layers of amino acids within the protein structure provide the necessary properties that enable chemical reactions to happen within living organisms at physiological temperature and under mild conditions. Many of these same reactions, when performed in a laboratory or industrial setting, require high temperature and caustic conditions. An important, ultimate goal of this work is to be able to design protein catalysts to perform industrial chemical reactions, because for most industrial chemical processes, there is no natural enzyme that can serve as a catalyst. The development of such protein catalysts for industrial use will translate to less energy usage, lower costs, less waste, and fewer unwanted by-products. Thus the ability to design protein catalysts has many potential benefits to the environment, to the economy, and to human well-being. This project will train doctoral students and undergraduate research interns, including members of underrepresented groups, to become highly qualified scientists in the areas of biochemistry and computational biology; the cultivation of such expertise is vital to the regional high-tech economy and to U.S. competitiveness in the global economy. This project will explore how distal residues contribute to enzyme catalysis, establish additional principles about their role in catalysis, and take the first steps toward using these principles for enzyme design. The project takes a multilateral approach, combining theory, computation, biochemical experiments, x-ray crystal structure determination, x-ray solution scattering, and high-field electron spin resonance spectroscopy. These simulations and experiments will provide information about the electrostatic, structural, and dynamic effects of amino acid residues, including remote residues, on catalysis. The specific examples to be studied in this project, a Y-family DNA polymerase DinB and an aldolase, were chosen because they lead into - and provide insight into - protein design problems. The effects of distal residues on proton transfer equilibria in the active site, and the associated requirements for catalysis, will be investigated. Study of the roles of individual residues in Y-family DNA polymerases will increase understanding of the mechanism of extension in DNA replication and repair of damaged DNA. The results will be used to address whether improved extension capability can be engineered into the polymerase DinB. Investigation of the interactions between residues in a natural aldolase will increase understanding of its catalytic mechanism; the emerging principles will be used to improve activity of an artificially designed retroaldolase. New features to address the problem of enzyme design, namely the predictability and importance of distal residue participation in forging the right catalytic properties and the use of coupled protonation states, are introduced. The capability to design enzymes that can catalyze any desired chemical reaction is a grand challenge in science. This project will develop design principles to build on the knowledge base that is necessary to create such enzymes. Enzyme design principles to be developed and tested in this project thus have potential impact on biotechnology, environmental remediation, agriculture, and the growth of a "green" economy, as well as the chemical industry.
标题:酶催化和蛋白质设计酶工程中的远端残基 - 设计蛋白质作为特定,所需化学反应的催化剂的能力 - 目前处于其早期阶段。该项目旨在使用可以计算的蛋白质结构的特性来开发酶工程的设计原理。该项目建立在最近发现的基础上,该发现揭示了有关自然如何建立蛋白质分子催化中心的新信息,其中蛋白质结构内的多层氨基酸提供了必要的特性,使化学反应在生理温度和轻度条件下在生物生物中发生。在实验室或工业环境中进行的许多相同反应都需要高温和苛性条件。这项工作的一个重要的最终目标是能够设计蛋白质催化剂以执行工业化学反应,因为对于大多数工业化学过程,没有天然酶可以用作催化剂。这种用于工业用途的蛋白质催化剂的开发将转化为减少能源的使用,较低的成本,浪费较少,不需要的副产品更少。因此,设计蛋白质催化剂的能力对环境,经济和人类福祉具有许多潜在的好处。该项目将培训博士生和本科生研究实习生,包括人数不足的群体的成员,成为生物化学和计算生物学领域的高素质科学家;这种专业知识的培养对于区域高科技经济以及美国在全球经济中的竞争力至关重要。该项目将探讨远端残基如何促进酶催化,建立有关其在催化中作用的其他原则,并采取第一步,将这些原理用于酶设计。该项目采用多边方法,结合理论,计算,生化实验,X射线晶体结构测定,X射线溶液散射和高场电子自旋共振光谱。这些模拟和实验将提供有关氨基酸残基(包括远程残基)对催化的静电,结构和动态作用的信息。之所以选择该项目中要研究的特定示例,即Y-家庭DNA聚合酶Dinb和醛糖酶,因为它们会导致并提供洞察蛋白质设计问题。将研究远端残基对活性位点质子转移平衡的影响以及催化的相关要求。研究单个残基在Y-家庭DNA聚合酶中的作用将增加对DNA复制和修复受损DNA的扩展机理的理解。结果将用于解决是否可以将提高的扩展能力设计到聚合酶Dinb中。对自然醛酶中残基之间的相互作用的研究将增加对其催化机制的理解。新兴的原理将用于改善人为设计的恢复氧化氢酶的活动。引入了解决酶设计问题的新功能,即引入远端残基参与锻造正确的催化特性和使用耦合质子化状态的可预测性和重要性。设计可以催化任何所需化学反应的酶的能力是科学的巨大挑战。该项目将制定设计原则,以建立创建此类酶的必要知识基础。因此,在该项目中要制定和测试的酶设计原理对生物技术,环境修复,农业以及“绿色”经济以及化学工业的增长有潜在的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mary Jo Ondrechen其他文献
Distal Residues and Enzyme Activity: Implications for Personalized Medicine
- DOI:
10.1016/j.bpj.2019.11.2937 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Lisa Ngu;Jenifer N. Winters;Lee Makowski;Penny J. Beuning;Mary Jo Ondrechen - 通讯作者:
Mary Jo Ondrechen
Machine learning for prediction of protein function and elucidation of enzyme function and control
- DOI:
10.1016/j.bpj.2023.11.2608 - 发表时间:
2024-02-08 - 期刊:
- 影响因子:
- 作者:
Lakindu Pathira Kankanamge;Lydia A. Ruffner;Atif Shafique;Suhasini M. Iyengar;Kelly K. Barnsley;Penny Beuning;Mary Jo Ondrechen - 通讯作者:
Mary Jo Ondrechen
Computed chemical properties for predicting protein function
- DOI:
10.1016/j.bpj.2021.11.2042 - 发表时间:
2022-02-11 - 期刊:
- 影响因子:
- 作者:
Suhasini Iyengar;Lakindu Pathira Kankanamge;Penny Beuning;Mary Jo Ondrechen - 通讯作者:
Mary Jo Ondrechen
Hydration sphere structure of architectural molecules: polyethylene glycol and polyoxymethylene oligomers
建筑分子的水化球结构:聚乙二醇和聚甲醛低聚物
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:6
- 作者:
A. M. Rozza;Danny E. P. Vanpoucke;Eva;J. Bouckaert;R. Blossey;M. Lensink;Mary Jo Ondrechen;I. Bakó;J. Oláh;Goedele Roos - 通讯作者:
Goedele Roos
Key interactions convert amino acid side chains into strong acids and bases in the active sites of enzymes
- DOI:
10.1016/j.bpj.2022.11.2479 - 发表时间:
2023-02-10 - 期刊:
- 影响因子:
- 作者:
Suhasini M. Iyengar;Kelly K. Barnsley;Atif Shafique;Mary Jo Ondrechen - 通讯作者:
Mary Jo Ondrechen
Mary Jo Ondrechen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mary Jo Ondrechen', 18)}}的其他基金
Role of Coupled Amino Acids in the Mechanisms of Enzyme Catalysis
偶联氨基酸在酶催化机制中的作用
- 批准号:
2147498 - 财政年份:2022
- 资助金额:
$ 75.48万 - 项目类别:
Standard Grant
RAPID: Undergraduate Research in Modeling and Computation for Discovery of Molecular Probes for SARS-CoV-2 Proteins
RAPID:发现 SARS-CoV-2 蛋白分子探针的建模和计算本科生研究
- 批准号:
2031778 - 财政年份:2020
- 资助金额:
$ 75.48万 - 项目类别:
Standard Grant
RAPID: D3SC: Identification of Chemical Probes and Inhibitors Targeting Novel Sites on SARS-CoV-2 Proteins for COVID-19 Intervention
RAPID:D3SC:针对 SARS-CoV-2 蛋白新位点的化学探针和抑制剂的鉴定,用于干预 COVID-19
- 批准号:
2030180 - 财政年份:2020
- 资助金额:
$ 75.48万 - 项目类别:
Standard Grant
D3SC: Mining for mechanistic information to predict protein function
D3SC:挖掘机制信息来预测蛋白质功能
- 批准号:
1905214 - 财政年份:2019
- 资助金额:
$ 75.48万 - 项目类别:
Standard Grant
Chemical Signatures for the Discovery of Protein Function
用于发现蛋白质功能的化学特征
- 批准号:
1305655 - 财政年份:2013
- 资助金额:
$ 75.48万 - 项目类别:
Standard Grant
Understanding Extended Active Sites in Enzymes
了解酶中的扩展活性位点
- 批准号:
1158176 - 财政年份:2012
- 资助金额:
$ 75.48万 - 项目类别:
Standard Grant
Are Enzyme Active Sites Built in Multiple Layers?
酶活性位点是多层构建的吗?
- 批准号:
0843603 - 财政年份:2009
- 资助金额:
$ 75.48万 - 项目类别:
Standard Grant
Protein Structure-Based Prediction of Functional Information
基于蛋白质结构的功能信息预测
- 批准号:
0517292 - 财政年份:2005
- 资助金额:
$ 75.48万 - 项目类别:
Continuing Grant
THEMATICS: Development and Application of a New Computational Tool for Functional Genomics
主题:功能基因组学新计算工具的开发和应用
- 批准号:
0135303 - 财政年份:2002
- 资助金额:
$ 75.48万 - 项目类别:
Standard Grant
POWRE: Enzyme-Substrate Interactions Mediated by Vitamin B6
POWRE:维生素 B6 介导的酶-底物相互作用
- 批准号:
0074574 - 财政年份:2000
- 资助金额:
$ 75.48万 - 项目类别:
Standard Grant
相似国自然基金
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
出土丝绸和土壤间质量传输机制与残留物鉴定方法优化研究
- 批准号:42307551
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
设施保护地苔藓结皮对土壤理化性质和农药残留物吸收降解作用研究
- 批准号:32260320
- 批准年份:2022
- 资助金额:33.00 万元
- 项目类别:地区科学基金项目
设施保护地苔藓结皮对土壤理化性质和农药残留物吸收降解作用研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于谱段间角度差异指数的农田作物残留物遥感信息提取方法研究
- 批准号:42101362
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Understanding How Remote Residues Influence Enzyme Catalysis
了解远程残基如何影响酶催化
- 批准号:
2102048 - 财政年份:2021
- 资助金额:
$ 75.48万 - 项目类别:
Standard Grant
The role of non active-site residues in enzyme catalysis
非活性位点残基在酶催化中的作用
- 批准号:
1801770 - 财政年份:2016
- 资助金额:
$ 75.48万 - 项目类别:
Studentship
Investigating tryptophan residues in the yeast enzyme cystathionine gamma-lyase
研究酵母酶胱硫醚γ-裂解酶中的色氨酸残基
- 批准号:
432720-2012 - 财政年份:2012
- 资助金额:
$ 75.48万 - 项目类别:
University Undergraduate Student Research Awards
Investigating tryptophan residues in the enzyme cystathionine beta-lyase
研究胱硫醚β-裂解酶中的色氨酸残基
- 批准号:
417637-2011 - 财政年份:2011
- 资助金额:
$ 75.48万 - 项目类别:
University Undergraduate Student Research Awards
Repair of methionine residues in H. pylori catalase
幽门螺杆菌过氧化氢酶中蛋氨酸残基的修复
- 批准号:
7530074 - 财政年份:2008
- 资助金额:
$ 75.48万 - 项目类别: