Smoothing Methods in Optimization

优化中的平滑方法

基本信息

  • 批准号:
    1514559
  • 负责人:
  • 金额:
    $ 18.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

This research project concerns mathematical optimization, a field that has experienced explosive growth of over the past thirty years due to its wide applicability in science, engineering, business, and medicine. Contributing factors include the advent of the internet, advances in computational power and computing architectures, the availability of very large data sets, as well as advances in science, engineering, communication, and business. These developments have created a fertile ground for the emergence of new applications and data acquisition modalities, in addition to new methods for data management, interpretation, and modeling. These are the driving forces behind big data and machine learning research. In addition, there is a greater urgency in many disciplines for addressing questions concerning design, efficiency, risk, and inference, as well as model selection, system identification, and error and uncertainty quantification. This research project aims to develop new methods in non-smooth optimization and to study the practical impact of these methods. The research will emphasize underlying optimization tools, including model development, the design of numerical solution procedures, and the assessment and quantification of model validity, sensitivity, robustness, and uncertainty.This project concerns the methods and theory associated with the use of smoothing techniques in optimization. In order to extract solutions having pre-specified properties, objective functions in modern optimization problems are often non-differentiable, with the non-differentiability being a key descriptive component. In addition, non-differentiability is present in an essential way when the problem is constrained. Problems possessing non-differentiability appear across a broad spectrum of applications. These include robust statistical modeling, regularization formulations to encode prior information, system identification, sparsity optimization, matrix completion, semi-definite programming, and any problem possessing constraints. In addition, many modern problems are very large scale. Hence, there is a focus on the development of fast optimization algorithms for large-scale applications in the presence of non-smooth/non-convex objectives. Smoothing methods are designed to approximate these non-smooth problems, with the goal of rapidly obtaining good approximate solutions. This project is devoted to the development and understanding of new and emerging smoothing methods for non-smooth optimization, to providing a mathematical foundation for these methods, and to studying the practical impact of these methods on a range of applications. Primary objectives include (1) developing a framework for convergence analysis, (2) extending results for convex problems to non-convex problems, (3) providing a calculus for smoothing techniques, (4) developing error bounds using duality theory, (5) continued development of the level set method for optimization, and (6) consideration of parametrized optimal value functions.
该研究项目涉及数学优化,该领域由于其在科学,工程,商业和医学方面的广泛适用性而在过去三十年中经历了爆炸性的增长。贡献因素包括互联网的出现,计算能力和计算体系结构的进步,非常大的数据集的可用性以及科学,工程,沟通和业务的进步。除了用于数据管理,解释和建模的新方法外,这些发展为新应用程序和数据采集方式的出现创造了肥沃的基础。这些是大数据和机器学习研究背后的动力。此外,许多学科的紧迫性,要解决有关设计,效率,风险和推理以及模型选择,系统识别以及错误和不确定性量化的问题。该研究项目旨在开发非平滑优化的新方法,并研究这些方法的实际影响。 这项研究将强调基本的优化工具,包括模型开发,数值解决方案程序的设计以及模型有效性,敏感性,鲁棒性和不确定性的评估和量化。此项目涉及与在优化中使用平滑技术相关的方法和理论。为了提取具有预先指定属性的解决方案,现代优化问题中的目标函数通常是不可差异的,而非差异性是一个关键的描述组件。另外,当问题受到限制时,以必不可少的方式存在非差异性。具有非差异性的问题出现在广泛的应用中。其中包括可靠的统计建模,正规化公式以编码先前的信息,系统识别,稀疏性优化,矩阵完成,半定义编程以及任何具有约束的问题。此外,许多现代问题非常大。 因此,在存在非平滑/非凸目标的情况下,针对大规模应用程序的快速优化算法的开发。平滑方法旨在近似这些非平滑问题,目的是快速获得良好的近似解决方案。该项目致力于开发和理解非平滑优化的新和新兴平滑方法,为这些方法提供数学基础,并研究这些方法对一系列应用的实际影响。主要目标包括(1)开发一个用于收敛分析的框架,(2)扩展凸问题的结果到非convex问题,(3)为平滑技术提供微积分,(4)使用偶性理论开发误差界,(5)持续开发优化级别的级别设置方法,以及(6)(6)考虑到优化最佳值函数的考虑。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inexact Sequential Quadratic Optimization with Penalty Parameter Updates within the QP Solver
QP 求解器内带有惩罚参数更新的不精确序列二次优化
  • DOI:
    10.1137/18m1176488
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Burke, James V.;Curtis, Frank E.;Wang, Hao;Wang, Jiashan
  • 通讯作者:
    Wang, Jiashan
The subdifferential of measurable composite max integrands and smoothing approximation
可测复合最大被积函数的次微分与平滑近似
  • DOI:
    10.1007/s10107-019-01441-9
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    James V. Burke;Xiaojun Chen;Hailin Sun
  • 通讯作者:
    Hailin Sun
Foundations of Gauge and Perspective Duality
  • DOI:
    10.1137/17m1119020
  • 发表时间:
    2017-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Aravkin;J. Burke;D. Drusvyatskiy;M. Friedlander;Kellie J. MacPhee
  • 通讯作者:
    A. Aravkin;J. Burke;D. Drusvyatskiy;M. Friedlander;Kellie J. MacPhee
Generalized Kalman smoothing: Modeling and algorithms
  • DOI:
    10.1016/j.automatica.2017.08.011
  • 发表时间:
    2017-12-01
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Aravkin, Aleksandr;Burke, James V.;Pillonetto, Gianluigi
  • 通讯作者:
    Pillonetto, Gianluigi
Variational Properties of Matrix Functions via the Generalized Matrix-Fractional Function
通过广义矩阵分数函数的矩阵函数的变分性质
  • DOI:
    10.1137/18m1209660
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Burke, James V.;Gao, Yuan;Hoheisel, Tim
  • 通讯作者:
    Hoheisel, Tim
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Burke其他文献

Emulating 3 Clinical Trials That Compare Stroke Rehabilitation at Inpatient Rehabilitation Facilities With Skilled Nursing Facilities
  • DOI:
    10.1016/j.apmr.2021.12.029
  • 发表时间:
    2022-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kent P. Simmonds;James Burke;Allan J. Kozlowski;Michael Andary;Zhehui Luo;Mathew J. Reeves
  • 通讯作者:
    Mathew J. Reeves
A POSSIBLE ROLE FOR PROPRANOLOL IN THE TREATMENT OF RENAL OSTEODYSTROPHY
普萘洛尔在治疗肾性骨营养不良中的可能作用
  • DOI:
  • 发表时间:
    1978
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Caro;A. Besarab;James Burke;J. Glennon
  • 通讯作者:
    J. Glennon
Safety of Neoral conversion in maintenance renal transplant patients: A one-year, double-blind study
  • DOI:
    10.1046/j.1523-1755.1999.00599.x
  • 发表时间:
    1999-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Daniel C. Brennan;Ralph Barbeito;James Burke;Kenneth Brayman;Stuart Greenstein;Tammy Chang; on behalf of the Novartis OLN-353 Study Group
  • 通讯作者:
    on behalf of the Novartis OLN-353 Study Group
Threat Effects and the Internationalization of Production
威胁效应和生产的国际化
  • DOI:
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Epstein;James Burke
  • 通讯作者:
    James Burke
IN OUR COVID WORLD, DON’T FORGET ABOUT INFLUENZA: FULMINANT MYOCARDITIS CAUSED BY INFLUENZA B
  • DOI:
    10.1016/s0735-1097(21)03554-3
  • 发表时间:
    2021-05-11
  • 期刊:
  • 影响因子:
  • 作者:
    Desire G. Guthier;Tarick Sheikh;Paul Secheresiu;Sagar Vadhar;James Burke
  • 通讯作者:
    James Burke

James Burke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Burke', 18)}}的其他基金

Structured Non-Smooth Optimization: Theory and Methods
结构化非光滑优化:理论与方法
  • 批准号:
    1908890
  • 财政年份:
    2019
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
Variational Analysis, Optimization of Eigenvalues, and Robust Stability
变分分析、特征值优化和鲁棒稳定性
  • 批准号:
    0505712
  • 财政年份:
    2005
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Continuing Grant
Optimization: Theory, Algorithms, and Applications
优化:理论、算法和应用
  • 批准号:
    0203175
  • 财政年份:
    2002
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Continuing Grant
Optimization: Theory, Algorithms, and Applications
优化:理论、算法和应用
  • 批准号:
    9971852
  • 财政年份:
    1999
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Eigenvalue Optimization and Robust Mathematical Programming
数学科学:特征值优化和鲁棒数学规划
  • 批准号:
    9303772
  • 财政年份:
    1993
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Eigenvalue Optimization and Robust Mathematical Programming
数学科学:特征值优化和鲁棒数学规划
  • 批准号:
    9102059
  • 财政年份:
    1991
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Exact Penalty Functions in Constrained Optimization
数学科学:约束优化中的精确罚函数
  • 批准号:
    8803206
  • 财政年份:
    1988
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Exact Penalty Functions in Constrained Optimization
数学科学:约束优化中的精确罚函数
  • 批准号:
    8602399
  • 财政年份:
    1986
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant

相似国自然基金

面向线索优化与任务驱动的水下视觉感知增强方法研究
  • 批准号:
    62301105
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
控制与优化问题的有限余维数方法
  • 批准号:
    12371444
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于Cramér-Rao下限最优准则的DSInSAR参数优化选取与形变估计方法研究
  • 批准号:
    42304041
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于信任的车辆安全预警多尺度干预绩效影响机理与协同优化方法
  • 批准号:
    52372322
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于生成对抗网络和特征辅助的微波器件拓扑建模和优化方法研究
  • 批准号:
    62301229
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Novel Parallelization Frameworks for Large-Scale Network Optimization with Combinatorial Requirements: Solution Methods and Applications
职业:具有组合要求的大规模网络优化的新型并行化框架:解决方法和应用
  • 批准号:
    2338641
  • 财政年份:
    2024
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
Accelerating drug discovery via ML-guided iterative design and optimization
通过机器学习引导的迭代设计和优化加速药物发现
  • 批准号:
    10552325
  • 财政年份:
    2023
  • 资助金额:
    $ 18.7万
  • 项目类别:
SHF: Small: Methods and Architectures for Optimization and Hardware Acceleration of Spiking Neural Networks
SHF:小型:尖峰神经网络优化和硬件加速的方法和架构
  • 批准号:
    2310170
  • 财政年份:
    2023
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
CAREER: Advancing Efficient Global Optimization of Extremely Expensive Functions under Uncertainty using Structure-Exploiting Bayesian Methods
职业:使用结构利用贝叶斯方法在不确定性下推进极其昂贵的函数的高效全局优化
  • 批准号:
    2237616
  • 财政年份:
    2023
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Continuing Grant
Prediction of molten wall turbulence and defects in the solidified wall by DNS and PFM and optimization of control methods
利用DNS和PFM预测熔壁湍流和凝固壁缺陷并优化控制方法
  • 批准号:
    23K03655
  • 财政年份:
    2023
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了