Metal-insulator transitions and symmetry breaking in spin-orbit Mott materials

自旋轨道莫特材料中的金属-绝缘体跃迁和对称性破缺

基本信息

  • 批准号:
    1505549
  • 负责人:
  • 金额:
    $ 45.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Nontechnical Abstract:The goal of this project is to study the electronic and structural properties of crystalline materials found at a new frontier of condensed matter physics, one where materials possess both an appreciable interaction between electrons in tandem with a strong coupling between their inherent magnetism (spin) and their orbital motion. This unique combination of energy scales is predicted to stabilize fundamentally new states of electronic matter, ranging from new forms of superconductivity to new quantum entangled states with far-term applications potential in quantum computing. Research supported by the project focuses on understanding the materials pathways necessary for realizing these new states and on exploring the interactions responsible for driving the prototypical parent state of these materials - the spin-orbit Mott phase - from an insulator into a metal. Supported activities work to train the next generation of scientists utilizing national neutron and x-ray user facilities as well as work to address the nation's growing deficit in new materials discovery/synthesis by supporting the growth of new crystalline materials. The project provides research experience to undergraduates from underrepresented demographics through summer research internships as well as conducts outreach activities aimed at inspiring precollege students to pursue materials science/physics academic and career pathways. Technical Abstract:The project focuses on experimentally exploring the mechanisms through which new classes of spin-orbit Mott (SOM) materials are driven from their parent insulating states into the metallic regime via carrier/bandwidth tuning. The insulating phases of SOM systems are inherently driven by a delicate interplay between strong spin-orbit coupling, crystal field, and short-range Coulomb interactions. This unique balance of energy scales in SOM compounds is predicted to host nearby exotic ground states ranging from high temperature superconductivity, to novel forms of quantum spin liquids, to correlated topological phases. Models of these new phases place them within close proximity to the parent SOM state. The primary goal of the project is to understand how interactions evolve once this parent state is destabilized and driven into nearby materials phase space - specifically, to resolve the role of electron correlations and the evolution of electronic and structural degrees of freedom as the metallic state is approached. Searching for new states/phase behaviors beyond the melting of the spin-orbit Mott phase is a second, overlapping goal of the supported research. Research activities are comprised of a combined materials synthesis, bulk electron properties characterization, and neutron/x-ray scattering effort aimed at forming a comprehensive picture of interactions in perturbed SOM states in classes of Ruddlesden-Popper, pyrochlore, and geometrically frustrated iridates. Students at the graduate and undergraduate levels will be trained in materials synthesis techniques as well as in the use of neutron and x-ray scattering at national user facilities, helping to build the core of the next generation of the national user community.
非技术摘要:该项目的目标是研究凝聚态物理新领域中发现的晶体材料的电子和结构特性,其中材料既具有电子之间明显的相互作用,又具有其固有磁性之间的强耦合(自旋)及其轨道运动。 预计这种独特的能量尺度组合将稳定电子物质的全新状态,从新形式的超导到在量子计算中具有长期应用潜力的新量子纠缠态。 该项目支持的研究重点是了解实现这些新状态所需的材料途径,并探索驱动这些材料的原型母态(自旋轨道莫特相)从绝缘体转变为金属的相互作用。 所支持的活动致力于利用国家中子和 X 射线用户设施培训下一代科学家,并通过支持新晶体材料的生长来解决国家在新材料发现/合成方面日益增长的赤字。 该项目通过暑期研究实习为代表性不足的本科生提供研究经验,并开展旨在激励大学预科生追求材料科学/物理学学术和职业道路的外展活动。技术摘要:该项目的重点是通过实验探索通过载流子/带宽调节将新型自旋轨道莫特(SOM)材料从其母体绝缘态驱动到金属态的机制。 SOM 系统的绝缘相本质上是由强自旋轨道耦合、晶体场和短程库仑相互作用之间微妙的相互作用驱动的。 SOM 化合物中这种独特的能量尺度平衡预计会产生附近的奇异基态,范围从高温超导到新型量子自旋液体,再到相关的拓扑相。这些新阶段的模型将它们置于非常接近父 SOM 状态的位置。 该项目的主要目标是了解一旦母态不稳定并被驱动到附近的材料相空间中,相互作用如何演变——具体来说,是为了解决电子相关性的作用以及金属态电子和结构自由度的演变。走近了。 寻找自旋轨道莫特相熔化之外的新状态/相行为是所支持研究的第二个重叠目标。研究活动包括组合材料合成、体电子特性表征和中子/X 射线散射工作,旨在形成 Ruddlesden-Popper、烧绿石和几何受挫虹彩类中扰动 SOM 态相互作用的全面图景。 研究生和本科生将接受材料合成技术以及中子和 X 射线散射在国家用户设施中的使用方面的培训,帮助建立下一代国家用户社区的核心。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Wilson其他文献

Many-body Brillouin–Wigner second-order perturbation theory: an application to the autoaromatisation of hex-3-ene-1,5-diyne (the Bergman reaction)
多体布里渊-维格纳二阶微扰理论:在己-3-烯-1,5-二炔自芳构化中的应用(伯格曼反应)
  • DOI:
    10.1080/00268970701832355
  • 发表时间:
    2008-01-10
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    P. Papp;P. Neogrády;Pavel Mach;J. Pittner;I. Huba;Stephen Wilson
  • 通讯作者:
    Stephen Wilson
Evaluation of a generic quality of life instrument for early childhood caries-related pain.
对儿童早期龋齿相关疼痛的通用生活质量工具进行评估。
  • DOI:
    10.1111/j.1600-0528.2007.00417.x
  • 发表时间:
    2008-10-01
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Jill A Easton;J. Landgraf;P. Casamassimo;Stephen Wilson;S. Ganzberg
  • 通讯作者:
    S. Ganzberg
Infantile refsum disease with enamel defects: a case report.
伴有牙釉质缺陷的婴儿反胃病:病例报告。
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    D. Tran;W. Greenhill;Stephen Wilson
  • 通讯作者:
    Stephen Wilson
Methods in Computational Chemistry
计算化学方法
  • DOI:
  • 发表时间:
    1987
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Stephen Wilson
  • 通讯作者:
    Stephen Wilson
The effect of ibuprofen on the level of discomfort inpatients undergoing orthodontic treatment.
布洛芬对接受正畸治疗的患者不适程度的影响。

Stephen Wilson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Wilson', 18)}}的其他基金

Resolving the basis of phenotypically variable hereditary abnormalities of eye formation
解决眼睛形成的表型变异遗传异常的基础
  • 批准号:
    MR/T020164/1
  • 财政年份:
    2020
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Research Grant
Unconventional metals in carrier-tuned spin-orbit Mott materials
载流子调谐自旋轨道莫特材料中的非常规金属
  • 批准号:
    1905801
  • 财政年份:
    2019
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Standard Grant
A new aquarium for the UCL Fish Facility
伦敦大学学院鱼类设施的新水族馆
  • 批准号:
    BB/R013705/1
  • 财政年份:
    2018
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Research Grant
DMREF: Collaborative Research: Structure Genome of Metal-Insulator Transitions
DMREF:合作研究:金属-绝缘体转变的结构基因组
  • 批准号:
    1729489
  • 财政年份:
    2017
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Standard Grant
CAREER: Experimental Neutron Scattering and Materials-Based Exploration of Spin-Orbital Physics in Intermediate-Bandwidth Quantum Materials
职业:中子散射实验和中带宽量子材料中自旋轨道物理的基于材料的探索
  • 批准号:
    1521208
  • 财政年份:
    2015
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Continuing Grant
Morphogenesis and growth of the eye in health and disease
健康和疾病中眼睛的形态发生和生长
  • 批准号:
    MR/L003775/1
  • 财政年份:
    2014
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Research Grant
MRI: Acquisition of SQUID Magnetometer for the Exploration of the Next Generation of Materials and the Study of Complex Spin Phenomena
MRI:获取 SQUID 磁力计用于探索下一代材料和研究复杂自旋现象
  • 批准号:
    1337567
  • 财政年份:
    2013
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Standard Grant
Anisotropic Liquid Dielectrophoresis and Interfacial Forces
各向异性液体介电泳和界面力
  • 批准号:
    EP/J009873/1
  • 财政年份:
    2012
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Research Grant
Anisotropic Liquid Dielectrophoresis and Interfacial Forces
各向异性液体介电泳和界面力
  • 批准号:
    EP/J009873/1
  • 财政年份:
    2012
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Research Grant
CIF: Small: Efficient Satellite Relaying
CIF:小型:高效卫星中继
  • 批准号:
    1116997
  • 财政年份:
    2011
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Standard Grant

相似国自然基金

染色质拓扑绝缘子介导的Linc-OP转录紊乱在老年相关骨质疏松症发生中的作用与机制研究
  • 批准号:
    82371600
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
直流GIS绝缘子介电功能梯度化设计理论及电场调控方法研究
  • 批准号:
    52307181
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
气液二相流与电场耦合下直流复合绝缘子覆冰形成及其伞裙结构优化
  • 批准号:
    52307161
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
纳秒脉冲下绝缘子真空沿面闪络的多尺度物理模型与调控方法研究
  • 批准号:
    52307186
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于异介质耦合测温的组合绝缘子多电弧路径污闪放电行为机理研究
  • 批准号:
    52307191
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Superconductor-(Metal)-Insulator Transitions: Understanding the Emergence of Metallic States, A Continuation Proposal
超导体-(金属)-绝缘体转变:了解金属态的出现,延续提案
  • 批准号:
    2307132
  • 财政年份:
    2023
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Continuing Grant
Superconducting and Metal-Insulator Transitions in Quasi-Two-Dimensional Strongly Correlated Materials
准二维强关联材料中的超导和金属-绝缘体转变
  • 批准号:
    2104193
  • 财政年份:
    2021
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Continuing Grant
Superconducting and Metal-Insulator Transitions in Quasi-Two-Dimensional Strongly Correlated Materials
准二维强关联材料中的超导和金属-绝缘体转变
  • 批准号:
    2104193
  • 财政年份:
    2021
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Continuing Grant
Superconductor-(Metal)-Insulator Transitions: Understanding the Emergence of Anomalous Metallic States
超导体-(金属)-绝缘体转变:了解反常金属态的出现
  • 批准号:
    1808385
  • 财政年份:
    2018
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Continuing Grant
E2CDA: Type II: Collaborative Research: Metal-insulator transitions for low power switching devices
E2CDA:类型 II:协作研究:低功率开关器件的金属绝缘体转换
  • 批准号:
    1740119
  • 财政年份:
    2017
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了