CDS&E: Uncertainty Quantification and Bayesian Updating in Data-Driven Cardiovascular Modeling
CDS
基本信息
- 批准号:1508794
- 负责人:
- 金额:$ 37.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-15 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
CBET - 1508794Marsden, Alison L.Cardiovascular disease is one of the major problems facing US and the world. While simulations of cardiovascular hemodynamics are now being used to study fundamental processes, trust in personalized simulation results before making clinical decisions for a patient is absent due to several uncertainties. This is exactly what this proposal is about, investigating these uncertainties and developing techniques to allow informed medical decisions. The co-PIs propose to disseminate their computational tools as open source programs. Though it is well known that cardiovascular simulations require numerous assumptions and assimilation of uncertain clinical data, these uncertainties currently get swept under the rug, asking end-users to accept deterministic simulation predictions as "truth" with no associated statistics. As a result, researchers and clinicians are left to wonder "How reliable are simulation predictions in light of myriad uncertainties?" and "How do the statistics on output predictions change with differing methodologies and assumptions?". These questions lead to justified skepticism in the research and clinical community, and are a roadblock to adoption. Development of transformative technology to assess uncertainty, currently lacking in the field, is of paramount importance for safe and routine adoption of simulations for personalized medicine and biomechanics research. This is the area that this proposal comes to cover, as it aspires to develop techniques that can lead to the incorporation of data-driven cardiovascular models to inform decisions surrounding choices of drug therapy, device placement, surgical methods and interventions for individual patients. The proposal has two goals: 1) Develop fast automated methods for parameter estimation and assimilation of uncertain data into multiscale models, 2) Develop an efficient framework to propagate uncertainties from clinical and imaging data to simulation predictions. It is proposed to demonstrate the uncertainty quantification (UQ) framework through application to multiscale simulations of coronary artery disease (CAD), though the framework will apply to a wide range of other cardiovascular and respiratory diseases. Simulations will be run in a high performance computing (HPC) environment using a multi-level parallel algorithm structure. The ultimate goal is to address currently unanswered questions about reliability and robustness in cardiovascular simulation. Results from this work, if successful, would enable acceptance of computational models and establish reliability metrics to guide model improvement and data collection. Cardiovascular simulations have potential to personalize treatments for individual patients and to characterize the in vivo mechanical environment, providing key biomechanical data that cannot be readily obtained from medical imaging. The proposed computational framework could be applicable to a range of problems in biomedical computing, biological modeling, and engineering applications using computational fluid dynamics. Dissemination will be achieved through contributions to the SimVascular open source project, for which Dr. Marsden is the PI. Activities that integrate research and teaching by introducing statistics concepts in graduate level courses and through outreach to middle and high school students are proposed.
CBET - 1508794Marsden,Alison L.心血管疾病是美国和世界面临的主要问题之一。虽然心血管血流动力学的模拟现在被用来研究基本过程,但由于存在一些不确定性,在为患者做出临床决策之前缺乏对个性化模拟结果的信任。这正是该提案的目的,调查这些不确定性并开发技术以做出明智的医疗决策。联合PI建议将他们的计算工具作为开源程序进行传播。尽管众所周知,心血管模拟需要大量假设和对不确定临床数据的同化,但这些不确定性目前被掩盖起来,要求最终用户接受确定性模拟预测作为没有相关统计数据的“真相”。因此,研究人员和临床医生不禁想知道“考虑到无数的不确定性,模拟预测的可靠性如何?”和“输出预测的统计数据如何随着不同的方法和假设而变化?”。这些问题导致研究和临床界产生合理的怀疑,并且成为采用的障碍。目前该领域缺乏评估不确定性的变革性技术,这对于安全和常规地采用模拟进行个性化医疗和生物力学研究至关重要。这是该提案所涵盖的领域,因为它渴望开发能够整合数据驱动的心血管模型的技术,为围绕个体患者的药物治疗选择、设备放置、手术方法和干预措施的决策提供信息。该提案有两个目标:1)开发用于参数估计和将不确定数据同化到多尺度模型的快速自动化方法,2)开发一个有效的框架,将临床和成像数据的不确定性传播到模拟预测。建议通过应用于冠状动脉疾病(CAD)的多尺度模拟来演示不确定性量化(UQ)框架,尽管该框架将广泛应用于其他心血管和呼吸系统疾病。模拟将使用多级并行算法结构在高性能计算(HPC)环境中运行。最终目标是解决目前尚未解答的有关心血管模拟可靠性和鲁棒性的问题。这项工作的结果如果成功,将使计算模型得到接受并建立可靠性指标来指导模型改进和数据收集。心血管模拟有潜力为个体患者提供个性化治疗,并表征体内机械环境,提供无法从医学成像中轻易获得的关键生物力学数据。所提出的计算框架可适用于使用计算流体动力学的生物医学计算、生物建模和工程应用中的一系列问题。传播将通过对 SimVascular 开源项目的贡献来实现,Marsden 博士是该项目的 PI。建议通过在研究生课程中引入统计概念以及向中学生和高中生进行推广来整合研究和教学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alison Marsden其他文献
The biomechanics and prevention of vein graft failure in coronary revascularization
冠状动脉血运重建中静脉移植失败的生物力学及预防
- DOI:
10.20517/2574-1209.2023.97 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Elbert E Heng;Hanjay Wang;O. Obafemi;Alison Marsden;Y. J. Woo;Jack H. Boyd - 通讯作者:
Jack H. Boyd
Alison Marsden的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alison Marsden', 18)}}的其他基金
Collaborative Research: Frameworks: A multi-fidelity computational framework for vascular mechanobiology in SimVascular
合作研究:框架:SimVasulous 中血管力学生物学的多保真度计算框架
- 批准号:
2310909 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Collaborative Research: Multifidelity Uncertainty Quantification Through Model Ensembles and Repositories
协作研究:通过模型集成和存储库进行多保真度不确定性量化
- 批准号:
2105345 - 财政年份:2021
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
SI2-SSI Collaborative Research: The SimCardio Open Source Multi-Physics Cardiac Modeling Package
SI2-SSI 协作研究:SimCardio 开源多物理场心脏建模包
- 批准号:
1663671 - 财政年份:2017
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Collaborative Research: SI2-SSI: A Sustainable Open Source Software Pipeline for Patient Specific Blood Flow Simulation and Analysis
合作研究:SI2-SSI:用于患者特定血流模拟和分析的可持续开源软件管道
- 批准号:
1562450 - 财政年份:2015
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
CAREER: Optimization and Parameterization for Multiscale Cardiovascular Flow Simulations Using High Performance Computing
职业:使用高性能计算进行多尺度心血管血流模拟的优化和参数化
- 批准号:
1556479 - 财政年份:2015
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Collaborative Research: SI2-SSI: A Sustainable Open Source Software Pipeline for Patient Specific Blood Flow Simulation and Analysis
合作研究:SI2-SSI:用于患者特定血流模拟和分析的可持续开源软件管道
- 批准号:
1339824 - 财政年份:2013
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
CAREER: Optimization and Parameterization for Multiscale Cardiovascular Flow Simulations Using High Performance Computing
职业:使用高性能计算进行多尺度心血管血流模拟的优化和参数化
- 批准号:
1150184 - 财政年份:2012
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
First International Conference on Computational Simulation in Congenital Heart Disease, Feb 26-27, 2010 in San Diego, CA
第一届先天性心脏病计算模拟国际会议,2010 年 2 月 26-27 日在加利福尼亚州圣地亚哥举行
- 批准号:
1006188 - 财政年份:2010
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
相似国自然基金
数学物理问题中正则化模型的不确定性量化分析
- 批准号:12371423
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于时变耦合矩阵不等式的不确定非线性系统全局自适应量化控制研究
- 批准号:62373131
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
水电机组全工况健康状态双向认知建模与不确定性量化预测
- 批准号:52379088
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
民用飞机结构数字孪生系统不确定性量化与可信性验证方法研究
- 批准号:52372429
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高负荷涡轮叶顶气热耦合机理及多源不确定性量化的研究
- 批准号:52306051
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CDS&E: ECCS: Accurate and Efficient Uncertainty Quantification and Reliability Assessment for Computational Electromagnetics and Engineering
CDS
- 批准号:
2305106 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Multifidelity Uncertainty Quantification Through Model Ensembles and Repositories
合作研究:CDS
- 批准号:
2104831 - 财政年份:2021
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
CDS&E: Graph-Based Learning and Uncertainty Quantification for Large-Scale Complex Data
CDS
- 批准号:
1854637 - 财政年份:2019
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
CDS&E: Collaborative Research: Strategies for Managing Data in Uncertainty Quantification at Extreme Scales
CDS
- 批准号:
1808652 - 财政年份:2018
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
CDS&E: Collaborative Research: Strategies for Managing Data in Uncertainty Quantification at Extreme Scales
CDS
- 批准号:
1808576 - 财政年份:2018
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant