Engineered Three-Body Interactions in Quantum-Degenerate Atomic Gases

量子简并原子气体中的工程三体相互作用

基本信息

  • 批准号:
    1506343
  • 负责人:
  • 金额:
    $ 21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2019-03-31
  • 项目状态:
    已结题

项目摘要

At its most fundamental the physical description of the world around us seems to require two ingredients: elementary particles and interactions between pairs of such particles. For example, photons, the elementary particle of light, can scatter from a single electron and charged electrons will repel each other via the Coulomb force. Even objects that contain many elementary particles seem to interact in pairs. The scattering between atoms, with their many protons, neutrons, and electrons, for example, is often described in terms of interactions between pairs of them. At a bigger scale the motion of the moon, earth, and sun is describable in terms of the gravitational attraction between pairs of them. The composition of the moon, earth, or sun does not matter. This work, however, will focus on the study of three-body interactions, those that are not simply the sum of the pair-wise interactions, but those whose effect is zero when one of the three bodies is removed, and examine their influence on the physical description of the world. This project will train a University of Maryland graduate student. The student will be exposed to quantum physics at a fundamental yet practical level. The proximity to local atomic-physics laboratories, including the Joint Quantum Institute and NIST, will also greatly benefit the student.In atomic, molecular, and optical physics, there are several cases where three-body interactions are known to matter. For example, in the description of interacting, reacting, and colliding molecules, such forces arise in the so-called Born-Oppenheimer approximation when integrating out the fast electron motion. Conceived in nuclear physics, tri-atomic Efimov states are now studied with ultra-cold atoms at temperatures on the order of a nanoKelvin. Binding of these weakly-bound states crucially depends on a so-called three-body parameter. In all cases three-body interactions emerge when high-energy modes or fast constituents are "eliminated" from the description. This group will design or engineer many-body systems of ultra-cold atoms or molecules held in laser-generated periodic potentials that solely interact through three-body forces. More precisely, starting from a Hamiltonian, where atoms do interact through pair-wise interactions, the investigators will derive effective Hamiltonians that only contain three-body interactions. The ability to freely adjust the periodic trapping potential as well as the strength of the two-particle interactions will be crucial. Research into such effective many-body Hamiltonians has intellectual merit for two separate reasons. Firstly, the research addresses fundamental questions about the origin or emergence of three-body forces. Moreover, for the first time it may be possible to create a realistic system with controllable two-body forces and thereby highlight the role of three-body forces. A second intellectual merit of a design of such a Hamiltonian is that they might have quantum ground states or phases with unique order. For example, it can lead to superfluids with pairs of atoms. This approach relies on controllable cancellations between contributions to the two-body interaction, leaving only three-body interactions. In addition, it relies on time-dependent changes in and driving of the single-particle optical-lattice potential to populate a subset of levels, whose energies simulate three-body interactions. There will be impact in other fields of physics where effective field theories and collective phenomena are important, such as condensed matter and high-energy physics. In particular, with atomic system one can study processes that are fundamental but far-less accessible in systems investigated by those fields.
从最基本的角度来看,对我们周围世界的物理描述似乎需要两个要素:基本粒子和成对粒子之间的相互作用。例如,光子(光的基本粒子)可以从单个电子中散射,带电电子将通过库仑力相互排斥。即使包含许多基本粒子的物体似乎也是成对相互作用的。例如,具有许多质子、中子和电子的原子之间的散射通常用它们对之间的相互作用来描述。在更大的尺度上,月球、地球和太阳的运动可以用它们之间的引力来描述。月亮、地球或太阳的组成并不重要。 然而,这项工作将重点研究三体相互作用,这些相互作用不仅仅是成对相互作用的总和,而是当三个物体之一被移除时效果为零的相互作用,并检查它们对对世界的物理描述。 该项目将培训一名马里兰大学研究生。学生将接触基础且实用的量子物理学。靠近当地的原子物理实验室,包括联合量子研究所和 NIST,也将使学生受益匪浅。 在原子、分子和光学物理中,有几种已知三体相互作用与物质相互作用的情况。例如,在分子相互作用、反应和碰撞的描述中,当积分快速电子运动时,这种力会出现在所谓的玻恩-奥本海默近似中。在核物理学中设想的三原子 Efimov 态现在用纳开尔文量级的超冷原子进行研究。这些弱结合态的结合关键取决于所谓的三体参数。在所有情况下,当高能模式或快速成分从描述中“消除”时,就会出现三体相互作用。该小组将设计或设计超冷原子或分子的多体系统,这些系统保持在激光产生的周期性势中,仅通过三体力相互作用。更准确地说,从原子确实通过成对相互作用相互作用的哈密顿量开始,研究人员将推导出仅包含三体相互作用的有效哈密顿量。自由调节周期性捕获势以及两粒子相互作用强度的能力至关重要。对这种有效的多体哈密顿量的研究具有智力价值,原因有两个。首先,该研究解决了有关三体力的起源或出现的基本问题。此外,首次有可能创建一个具有可控二体力的现实系统,从而突出三体力的作用。这种哈密顿量设计的第二个智力优点是它们可能具有具有独特顺序的量子基态或相。例如,它可以产生具有原子对的超流体。这种方法依赖于对二体相互作用的贡献之间的可控抵消,只留下三体相互作用。此外,它依赖于单粒子光学晶格势的随时间变化和驱动来填充能级子集,其能量模拟三体相互作用。这将对有效场论和集体现象很重要的其他物理学领域产生影响,例如凝聚态物理学和高能物理学。特别是,通过原子系统,人们可以研究那些基本但在这些领域所研究的系统中难以实现的过程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eite Tiesinga其他文献

Eite Tiesinga的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

USP46通过去泛素化修饰RAP80促进同源重组修复的分子机制及其在三阴乳腺癌中的功能研究
  • 批准号:
    82373150
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
基于国人脊柱矢状位序列新分型的腰椎-躯干三维运动研究
  • 批准号:
    82302739
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高寒草灌植被冠层与根系结构对三维土壤水分动态的影响研究
  • 批准号:
    42301019
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
三维有序大/介孔稀土氧化物(La2O3和CeO2)负载Ru催化剂用于氨分解性能研究
  • 批准号:
    52361040
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
人机物三元融合环境下的人机合作关键问题研究
  • 批准号:
    62376117
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Engineered tissue arrays to streamline deimmunized DMD gene therapy vectors
工程组织阵列可简化去免疫 DMD 基因治疗载体
  • 批准号:
    10724882
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
UCLA High-Throughput Neuropsychiatric Disorder Phenotyping Center (UCLA HT-NPC)
加州大学洛杉矶分校高通量神经精神疾病表型中心 (UCLA HT-NPC)
  • 批准号:
    10643541
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
Multiscale hydrogel biomaterials-enabled 3D modeling of cancer drug resistance
基于多尺度水凝胶生物材料的癌症耐药性 3D 建模
  • 批准号:
    10639167
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
Optical dissection of human embryonic germ layer patterning mechanisms using microengineered stem cell models
使用微工程干细胞模型对人类胚胎胚层图案形成机制进行光学解剖
  • 批准号:
    10646246
  • 财政年份:
    2022
  • 资助金额:
    $ 21万
  • 项目类别:
Metastasis of PTEN Mutant Prostate Cancer
PTEN突变前列腺癌的转移
  • 批准号:
    10689819
  • 财政年份:
    2022
  • 资助金额:
    $ 21万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了