Devices and Materials for the Instrument Science of Advanced Gravitational-Wave Detectors
先进引力波探测器仪器科学设备和材料
基本信息
- 批准号:1505598
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-06-01 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Gravitational waves are the messenger that will tell us about some of the most highly energetic events in the universe, in this case the coherent motion of very heavy masses undergoing high acceleration; such large masses can be found in black holes, the merger of neutron star binary systems, supernovae, and the echoes of the big bang. The discovery of gravitational waves as well as the discovery of these sources with Advanced LIGO, the Laser Interferometer Gravitational Wave Observatory built by the National Science Foundation to make a direct detection of gravitational waves, would be a major milestone in the history of science. Advanced LIGO encompasses an extremely diverse array of underlying scientific and engineering disciplines: examples include lasers, optics, low noise electronics, control systems, grid computing, algorithm development, and handling large data sets. The Advanced LIGO interferometers have turned on and commissioning of them has increased their sensitivity far above previous detectors. The goal of a tenfold sensitivity improvement is in sight. Because the search volume scales as distance cubed, advanced LIGO will have more than 1000 times more sources within its reach. To achieve this improved sensitivity, essentially everything except for the vacuum system has been replaced. This includes the use of a 180 Watt laser, quadruple pendulum suspensions, 40 kilogram test masses, active seismic platforms, a signal-recycled interferometer, stable recycling cavities, an output mode cleaner, DC readout, and improved thermal compensation. The higher laser power presents challenges for the input optics, a responsibility of the University of Florida. Moreover, this research has impacts that go beyond gravitational wave science. High-power optical devices developed in this project have commercial applications in the laser and optics industries.This project will address items that could be needed in order to optimize the performance of the detector. It also addresses basic research needed for future upgrades and next generation detectors, which will further increase the science reach of the observatories as well as work on detector characterization. Simulations of the interferometers will be carried out to aid commissioning work. Work on thermal adaptive mode-matching and devices for beam-jitter suppression will be done. A novel scheme for sensing alignment errors will be modeled and prototyped. Thermal coating noise as a function of temperature will be measured. Looking further into the future, experiments to measure impurities and free carrier absorption in high purity silicon for test masses will be conducted. Considerable effort will be put towards improving the bidirectional throughput of Faraday isolators that are key components of a squeezer for future detectors.
引力波是告诉我们宇宙中一些最高能事件的信使,在这种情况下,是非常重的质量经历高加速度的相干运动;如此大的质量可以在黑洞、中子星双星系统的合并、超新星和大爆炸的回声中找到。引力波的发现以及利用先进 LIGO(美国国家科学基金会为直接探测引力波而建造的激光干涉仪引力波天文台)发现这些源,将是科学史上的一个重要里程碑。高级 LIGO 涵盖极其多样化的基础科学和工程学科:示例包括激光、光学、低噪声电子、控制系统、网格计算、算法开发和处理大型数据集。高级 LIGO 干涉仪已启动并投入使用,其灵敏度已远远高于以前的探测器。灵敏度提高十倍的目标就在眼前。由于搜索量随着距离的立方而变化,先进的 LIGO 将在其范围内拥有超过 1000 倍的来源。为了实现这种更高的灵敏度,基本上除了真空系统之外的所有东西都被更换了。这包括使用 180 瓦激光器、四摆悬架、40 公斤测试质量、主动地震平台、信号回收干涉仪、稳定回收腔、输出模式清洁器、直流读数和改进的热补偿。更高的激光功率给输入光学器件带来了挑战,这是佛罗里达大学的责任。此外,这项研究的影响超越了引力波科学。该项目开发的高功率光学器件在激光和光学行业具有商业应用。该项目将解决优化探测器性能所需的项目。它还解决了未来升级和下一代探测器所需的基础研究,这将进一步扩大天文台的科学范围以及探测器表征工作。 将进行干涉仪模拟以帮助调试工作。将完成热自适应模式匹配和光束抖动抑制装置的工作。一种用于检测对准误差的新颖方案将被建模和原型化。将测量作为温度函数的热涂层噪声。展望未来,将进行测量用于测试质量的高纯硅中的杂质和自由载流子吸收的实验。我们将投入大量精力来提高法拉第隔离器的双向吞吐量,法拉第隔离器是未来探测器挤压器的关键组件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Tanner其他文献
重力波検出器用の光アイソレーターの開発
引力波探测器光隔离器的开发
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
片岡優;宗宮健太郎;矢野和城;David Tanner;Guido Mueller;Rodica Martin;Chris Mueller;Ryan Goetz;中野雅之;阿久津智忠;KAGRA Collaboration - 通讯作者:
KAGRA Collaboration
On the Performance of Continuum Solvation Models for the Solvation Energy of Small Anions
小阴离子溶剂化能连续溶剂化模型的性能研究
- DOI:
10.1021/om0508278 - 发表时间:
2006 - 期刊:
- 影响因子:2.8
- 作者:
Mårten S. G. Ahlquist;Sebastian Kozuch;S. Shaik;David Tanner;P. Norrby - 通讯作者:
P. Norrby
Evaluating reporting of patient-reported outcomes in randomized controlled trials regarding inflammatory bowel disease: a methodological study
评估炎症性肠病随机对照试验中患者报告结果的报告:一项方法学研究
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:2.6
- 作者:
Ryan McIntire;Philo Waters;David Tanner;Jaydeep Dhillon;C. Hillman;Audrey Wise;Michael Kee;Reece M. Anderson;Ryan Ottwell;Micah L. Hartwell;M. Vassar - 通讯作者:
M. Vassar
重力波検出器用の光アイソレーターの開発ⅠⅠ
引力波探测器光隔离器的研制ⅠⅠ
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
片岡優;宗宮健太郎;矢野和城;熱田将;柳沼拓哉;粕谷順子;David Tanner;中野雅之;阿久津智忠;KAGRA Collaboration - 通讯作者:
KAGRA Collaboration
David Tanner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Tanner', 18)}}的其他基金
Research Towards Future Gravitational-Wave Observatories: Lasers, Optics, Materials, Devices, and Simulations
未来引力波天文台的研究:激光、光学、材料、设备和模拟
- 批准号:
2309242 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
ALPS II: Commissioning and Data Taking
ALPS II:调试和数据采集
- 批准号:
2110705 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Technologies for Future Gravitational-Wave Observatories: Lasers, Optics, Materials, Cryogenics, and Simulations
未来引力波天文台技术:激光、光学、材料、低温和模拟
- 批准号:
2012021 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Devices, Materials, and Controls for Future Gravitational-Wave Detectors
未来引力波探测器的设备、材料和控制
- 批准号:
1707835 - 财政年份:2017
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Condensed Matter Physics 2016 Principal Investigator Workshop
凝聚态物理2016首席研究员研讨会
- 批准号:
1638485 - 财政年份:2016
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Condensed Matter Physics Broader Impacts Workshop
凝聚态物理更广泛的影响研讨会
- 批准号:
1522573 - 财政年份:2015
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Condensed Matter Physics 2015 Principal Investigator Workshop
凝聚态物理2015首席研究员研讨会
- 批准号:
1536367 - 财政年份:2015
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Condensed Matter Physics Principal Investigator Workshop, August 7-8, 2014
凝聚态物理首席研究员研讨会,2014 年 8 月 7-8 日
- 批准号:
1449587 - 财政年份:2014
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Development of High Power Continuous Wave Lasers, Components, and Optical Contamination Diagnostics for Future Ground-based Gravitational Wave Detectors
为未来地基引力波探测器开发高功率连续波激光器、组件和光学污染诊断
- 批准号:
1101587 - 财政年份:2011
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似国自然基金
基于植物酚类生态友好型功能材料的蓝藻水华全生命周期防控与治理机制研究
- 批准号:52370164
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
氢离子电池负极材料的表面结构诱导去溶剂化机制
- 批准号:52362030
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
温和条件下柴油超深度脱硫复合材料双活性中心协同及构效机制研究
- 批准号:22378065
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
高模量高塑性(CNTs+AlN)/AZ91复合材料的制备及性能调控机理研究
- 批准号:52301198
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于“三明治”构型的延迟荧光材料的设计、合成及其应用研究
- 批准号:52303244
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Mechanisms of accelerated calcification and structural degeneration of implantable biomaterials in pediatric cardiac surgery
小儿心脏手术中植入生物材料加速钙化和结构退化的机制
- 批准号:
10655959 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Linking SARS-CoV-2 Aerosol Viability and Environmental Factors in Healthcare Settings
将 SARS-CoV-2 气溶胶活力与医疗机构中的环境因素联系起来
- 批准号:
10588041 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Microfluidic Preparation of Specimens to Enable Submillisecond Time-Resolved Cryo-EM
样品的微流体制备以实现亚毫秒时间分辨冷冻电镜
- 批准号:
10736937 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
FABRICATION, CHARACTERIZATION, AND TESTING CORE (FaCT CORE)
制造、表征和测试核心 (FaCT CORE)
- 批准号:
10557615 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Minimally Invasive On Demand Electrical Nerve Block (OD-ENB) Device for Peripheral Pain
用于治疗周围疼痛的微创按需电神经阻滞 (OD-ENB) 装置
- 批准号:
10482175 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别: