GOALI: Understanding granulation using microbial resource management for the broader application of granular technology
目标:利用微生物资源管理了解颗粒化,以实现颗粒技术的更广泛应用
基本信息
- 批准号:2227366
- 负责人:
- 金额:$ 52.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-01-01 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The aerobic granular sludge (AGS) process has emerged as a promising biological wastewater treatment technology that is energy and carbon-efficient with a smaller footprint requirement compared to conventional activated sludge systems. Despite these advantages, the implementation of the AGS process has been slow, especially in the United States, due to several critical engineering challenges including the lack of robust operational data and fundamental knowledge on how to integrate the AGS process into flow-through reactor systems. In this GOALI project, the lead academic institution (University of Utah) and the industrial partner (DC Water) will combine and integrate their expertise, experience, and resources to address these critical challenges. To advance this goal, the academic partner will focus on the fundamental science of reactor operation, bacterial community analysis in different granular reactors, and kinetic analysis and modeling. The industrial partner will provide guidance and input in the design of the kinetic experiments, kinetic data analysis, student training and internship, and the translation of the research results to guide the design of full/pilot-scale systems. The successful completion of this project will benefit society through the generation of new fundamental knowledge to advance the design and implementation of granular activated sludge technology in flow-through reactor systems. Additional benefits to society will be achieved through student education and training including the mentoring of two graduate students and two undergraduate students at the University of Utah.Unlike the loose bacterial flocs of conventional activated sludge systems used in most large-scale wastewater treatment plants (WWTPs), aerobic granular sludge (AGS) reactors rely on fast-settling, round, compact biofilms called granules that circumvent the need to have separate aerobic-anoxic-anaerobic zones. In addition, they do not require a secondary gravity settler for a follow-up clarification step. However, the implementation of flow through AGS reactors and their integration into large-scale WWTPs has remained elusive due to a lack of robust operational data and fundamental engineering knowledge. To address these critical knowledge gaps, this GOALI project will generate validated kinetic data in sequencing batch and flow through AGS systems as a function of two critical operational parameters including temperature and food to microorganisms (F/M) ratio. The specific objectives of the research are to 1) investigate and characterize the granulation process as a function of F/M ratio and temperature in sequencing batch reactors; 2) investigate the process of granulation in a continuous flow-through reactor using optimal temperatures and F/M ratios that are selected following the completion of Objective 1; 3) construct functional gene networks existing in both granules and flocs under steady-state conditions and external perturbations and connect these networks with reactor performance using theoretical ecology and; 4) integrate findings into process design and operational protocols for the optimal operation and maintenance of flow-through AGS reactors in close collaboration with D.C. water. To implement the educational and training goals of this GOALI project, the Principal Investigator (PI) proposes to leverage existing programs at the University of Utah College of Engineering Diversity Office to recruit and mentor undergraduate students from underrepresented groups to work on this GOALI project. In addition, the PI plans to 1) integrate the research findings into existing undergraduate and graduate courses in the Department of Civil and Environmental Engineering at the University of Utah and 2) develop and deliver outreach activities based on computer animations to demonstrate, for example, how contaminated water affects water quality in receiving water bodies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
好氧颗粒污泥(AGS)工艺已成为一种有前途的生物废水处理技术,与传统的活性污泥系统相比,该技术具有能源效率和碳效率,且占地面积更小。 尽管有这些优点,但由于面临一些关键的工程挑战,包括缺乏可靠的操作数据和如何将 AGS 工艺集成到流通式反应器系统的基础知识,AGS 工艺的实施进展缓慢,特别是在美国。在这个 GOALI 项目中,牵头学术机构(犹他大学)和工业合作伙伴(DC Water)将结合并整合他们的专业知识、经验和资源,以应对这些关键挑战。为了推进这一目标,学术合作伙伴将重点关注反应器运行的基础科学、不同颗粒反应器中的细菌群落分析以及动力学分析和建模。工业合作伙伴将在动力学实验设计、动力学数据分析、学生培训和实习以及研究成果转化方面提供指导和投入,以指导全/中试规模系统的设计。该项目的成功完成将通过产生新的基础知识来推进流通式反应器系统中颗粒活性污泥技术的设计和实施,从而造福社会。通过学生教育和培训,包括对犹他大学两名研究生和两名本科生的指导,将给社会带来额外的好处。与大多数大型废水处理厂(WWTP)中使用的传统活性污泥系统的松散细菌絮凝体不同, ),好氧颗粒污泥(AGS)反应器依赖于称为颗粒的快速沉降、圆形、致密的生物膜,避免了单独的好氧-缺氧-厌氧区域的需要。此外,他们不需要二级重力沉降器来进行后续澄清步骤。然而,由于缺乏可靠的运行数据和基础工程知识,流经 AGS 反应器的实施及其与大型污水处理厂的集成仍然难以实现。为了解决这些关键知识差距,该 GOALI 项目将在 AGS 系统的批次和流量排序中生成经过验证的动力学数据,作为两个关键操作参数(包括温度和食品与微生物 (F/M) 比率)的函数。研究的具体目标是 1) 研究并表征序批式反应器中 F/M 比和温度函数的造粒过程; 2) 使用完成目标 1 后选择的最佳温度和 F/M 比率,研究连续流通式反应器中的造粒过程; 3)构建稳态条件和外部扰动下颗粒和絮凝物中存在的功能基因网络,并利用理论生态学将这些网络与反应器性能联系起来; 4) 将研究结果整合到工艺设计和操作方案中,与直流水密切合作,实现流通式 AGS 反应器的最佳操作和维护。为了实现该 GOALI 项目的教育和培训目标,首席研究员 (PI) 建议利用犹他大学工程学院多样性办公室的现有计划来招募和指导来自代表性不足群体的本科生来从事该 GOALI 项目。此外,PI 计划 1) 将研究成果整合到犹他大学土木与环境工程系现有的本科生和研究生课程中,2) 开发和开展基于计算机动画的推广活动,以展示,例如:受污染的水如何影响受纳水体的水质。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ramesh Goel其他文献
Effect of salinity stress and nitrogen depletion on growth, morphology and toxin production of freshwater cyanobacterium Microcoleus anatoxicus Stancheva & Conklin
盐度胁迫和氮素消耗对淡水蓝藻微鞘藻生长、形态和产毒的影响
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:2.6
- 作者:
R. Stancheva;Sydney Brown;Gregory L. Boyer;Bofan Wei;Ramesh Goel;Simone Henry;Nathaniel V. Kristan;Betsy Read - 通讯作者:
Betsy Read
Investigating the viral ecology and contribution to the microbial ecology in full-scale mesophilic anaerobic digesters.
研究全尺寸中温厌氧消化器中的病毒生态学及其对微生物生态学的贡献。
- DOI:
10.1016/j.chemosphere.2023.140743 - 发表时间:
2023-11-01 - 期刊:
- 影响因子:8.8
- 作者:
B. Bhattarai;A. Bhattacharjee;F. H. Coutinho;Ramesh Goel - 通讯作者:
Ramesh Goel
Molecular Methods in Biological Systems
生物系统中的分子方法
- DOI:
10.2175/106143010x12756668800735 - 发表时间:
2001-10-01 - 期刊:
- 影响因子:3.1
- 作者:
April Z. Gu;R. Nerenberg;Belinda M. Sturm;Park Chul;Ramesh Goel - 通讯作者:
Ramesh Goel
Stringent Response of Cyanobacteria and Other Bacterioplankton during Different Stages of a Harmful Cyanobacterial Bloom.
蓝藻和其他浮游细菌在有害蓝藻水华不同阶段的严格反应。
- DOI:
10.1021/acs.est.3c03114 - 发表时间:
2023-10-11 - 期刊:
- 影响因子:11.4
- 作者:
Hanyan Li;B. Bhattarai;Michael Barber;Ramesh Goel - 通讯作者:
Ramesh Goel
The Rising Tide of Plastic Pollution: Exploring Bacillus sp. for Sustainable Microbial Degradation of Polyethylene
塑料污染的浪潮:探索芽孢杆菌。
- DOI:
10.1007/s10924-024-03236-2 - 发表时间:
2024-03-28 - 期刊:
- 影响因子:5.3
- 作者:
Rahulkumar Sunil Singh;Eddie B. Gilcrease;Ramesh Goel;M. Free;P. Sarswat - 通讯作者:
P. Sarswat
Ramesh Goel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ramesh Goel', 18)}}的其他基金
Conference: Increasing participation of EPSCoR states in Translational Research
会议:增加 EPSCoR 国家对转化研究的参与
- 批准号:
2332983 - 财政年份:2023
- 资助金额:
$ 52.61万 - 项目类别:
Standard Grant
URoL:EN: Understanding the rule of life facilitating the proliferation of toxic cyanobacterial benthic mats in flowing freshwaters
URoL:EN:了解促进有毒蓝藻底栖垫在流动淡水中增殖的生命规则
- 批准号:
2222322 - 财政年份:2023
- 资助金额:
$ 52.61万 - 项目类别:
Standard Grant
PFI-TT: Reactive biofilm surfaces for efficient nitrogen management in liquid waste streams
PFI-TT:反应性生物膜表面,可有效管理液体废物流中的氮
- 批准号:
2213616 - 财政年份:2022
- 资助金额:
$ 52.61万 - 项目类别:
Standard Grant
I-CORPS: Assessing the commercial potential of reactive biofilm surfaces-based waste treatment technology
I-CORPS:评估基于反应性生物膜表面的废物处理技术的商业潜力
- 批准号:
2147431 - 财政年份:2021
- 资助金额:
$ 52.61万 - 项目类别:
Standard Grant
RAPID: Determination of health risks and Status from SARS-CoV-2 Presence in Urban Water cycle
RAPID:确定城市水循环中 SARS-CoV-2 存在的健康风险和状况
- 批准号:
2029515 - 财政年份:2020
- 资助金额:
$ 52.61万 - 项目类别:
Standard Grant
INFEWS: US-China: Collaborative Research: Investigating the role of wet wastes in the global circular economy: sustainable conversion to products using hydrothermal carbonization
INFEWS:中美:合作研究:调查湿废物在全球循环经济中的作用:利用水热碳化可持续转化为产品
- 批准号:
1902234 - 财政年份:2019
- 资助金额:
$ 52.61万 - 项目类别:
Standard Grant
GOALI: Elucidating the synergistic role of anammox bacteria with flanking bacterial community members in anammox bioreactors under different environmental conditions
目标:阐明不同环境条件下厌氧氨氧化生物反应器中厌氧氨氧化细菌与侧翼细菌群落成员的协同作用
- 批准号:
1903922 - 财政年份:2019
- 资助金额:
$ 52.61万 - 项目类别:
Standard Grant
Prokaryotes-phage interactions in engineered bioreactors-a new paradigm in system microbial ecology.
工程生物反应器中的原核生物-噬菌体相互作用——系统微生物生态学的新范式。
- 批准号:
1804158 - 财政年份:2018
- 资助金额:
$ 52.61万 - 项目类别:
Standard Grant
EAGER: CITIZEN SCIENCE BASED WATER QUALITY MONITORING IN UTAH LAKE
渴望:基于公民科学的犹他湖水质监测
- 批准号:
1743412 - 财政年份:2017
- 资助金额:
$ 52.61万 - 项目类别:
Standard Grant
EAGER: CITIZEN SCIENCE BASED WATER QUALITY MONITORING IN UTAH LAKE
渴望:基于公民科学的犹他湖水质监测
- 批准号:
1743412 - 财政年份:2017
- 资助金额:
$ 52.61万 - 项目类别:
Standard Grant
相似国自然基金
面向智能化仿真社会实验的具身人物视觉理解与身份构建
- 批准号:62302296
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向真实场景的基于人体关节点的行为理解研究
- 批准号:62302093
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
油菜雄性不育恢复基因BnaMs3抑制不育基因Bnams4b毒害的分子机理解析
- 批准号:32372178
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
SlHSD2调控番茄果实角质层发育的机理解析
- 批准号:32302571
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
山葡萄VaZFHD4-VaNAC26模块调控茉莉酸合成应答干旱胁迫的分子机理解析
- 批准号:32302517
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
ASDの多様な病像を認知粒度の観点から統一的に説明するモデルの実証的構築
从认知粒度的角度实证构建统一解释自闭症谱系障碍多样化病理学的模型
- 批准号:
21K03019 - 财政年份:2021
- 资助金额:
$ 52.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
低侵襲性の反応性ナノ・マンガン造影剤開発による「MRI病理組織変性解析法」の創成
开发微创活性纳米锰造影剂,创立“MRI组织病理变性分析方法”
- 批准号:
21H04966 - 财政年份:2021
- 资助金额:
$ 52.61万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
A study of non-local structure in Nikolaevskii turbulence toward understanding transition from convection to turbulence
研究尼古拉耶夫斯基湍流中的非局域结构,以理解从对流到湍流的转变
- 批准号:
20K04268 - 财政年份:2020
- 资助金额:
$ 52.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural physiology of channels based on development of cryo-electron microscopy
基于冷冻电子显微镜发展的通道结构生理学
- 批准号:
20H00451 - 财政年份:2020
- 资助金额:
$ 52.61万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Understanding the cross-organ communication on hematopoiesis regulated via gut microbiota signaling
了解通过肠道微生物群信号传导调节造血的跨器官通讯
- 批准号:
20K17381 - 财政年份:2020
- 资助金额:
$ 52.61万 - 项目类别:
Grant-in-Aid for Early-Career Scientists