SHF: Small: Collaborative Research: STEMS: STatistic Emerging Memory Simulator

SHF:小型:协作研究:STEMS:统计新兴内存模拟器

基本信息

  • 批准号:
    1461698
  • 负责人:
  • 金额:
    $ 11.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-16 至 2016-06-30
  • 项目状态:
    已结题

项目摘要

Emerging memory technologies such as Magnetoresistive random-access memory (MRAM), Phase-change memory (PCRAM), and Resistive random-access memory (RRAM) are being explored as potential alternatives for future computing systems. However, traditional memory design methodologies are not sufficient to address probabilistic behaviors, which are caused by process variations and the intrinsic randomness in the physical mechanisms (e.g., thermal fluctuations) of these emerging technologies. The objective of this research is to develop a design methodology called STatistical Emerging Memory Simulator (STEMS) for circuit/architecture designs with such emerging memory technologies. The intellectual merits include the following: (1) developing a generic statistical characterization formalism to link the emerging memory cell design specifications with design variables, process variations and environmental fluctuations, (2) deriving a variation-aware compact memory cell model to fulfill the demands of the statistical design optimizations at cell and array levels, and (3) investigating a statistical memory design methodology to explore the tradeoffs among memory structure, implementation cost, and design specifications for various system requirements. The proposed research will fundamentally change the design methodologies for future memory technologies, initiate an innovative direction in memory designs, and optimize and balance the new design characteristics of emerging memories under architectural considerations, inspiring the transition of design philosophy from the deterministic era to the probabilistic era. The proposed techniques provide a complementary perspective to the existing probabilistic system and architectural research while emphasizing the yield and probabilistic properties of memory designs. This project will facilitate further advances and wider adoption of the emerging memory technologies by the semiconductor industry. Innovations in design methods and memory modeling will have an impact on the way in which semiconductor memory chips are designed and fabricated. Undergraduate and graduate students involved in this research will be trained for the next-generation semiconductor industry workforce.
磁阻随机存取存储器 (MRAM)、相变存储器 (PCRAM) 和电阻随机存取存储器 (RRAM) 等新兴存储器技术正在被探索作为未来计算系统的潜在替代方案。然而,传统的存储器设计方法不足以解决由这些新兴技术的过程变化和物理机制(例如热波动)的内在随机性引起的概率行为。本研究的目的是开发一种称为统计新兴存储器模拟器 (STEMS) 的设计方法,用于采用此类新兴存储器技术进行电路/架构设计。智力优点包括以下内容:(1) 开发通用统计表征形式,将新兴存储单元设计规范与设计变量、工艺变化和环境波动联系起来,(2) 推导变化感知紧凑存储单元模型以满足需求单元和阵列级别的统计设计优化;(3) 研究统计存储器设计方法,以探索存储器结构、实现成本和各种系统要求的设计规范之间的权衡。该研究将从根本上改变未来存储器技术的设计方法,开创存储器设计的创新方向,并在架构考虑下优化和平衡新兴存储器的新设计特征,激发设计理念从确定性时代向概率性时代的转变时代。所提出的技术为现有的概率系统和架构研究提供了补充视角,同时强调了存储器设计的产量和概率特性。该项目将促进半导体行业进一步进步和更广泛地采用新兴存储技术。设计方法和存储器建模的创新将对半导体存储器芯片的设计和制造方式产生影响。参与这项研究的本科生和研究生将接受下一代半导体行业劳动力的培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuan Xie其他文献

MEDAL: Scalable DIMM based Near Data Processing Accelerator for DNA Seeding Algorithm
MEDAL:用于 DNA 播种算法的基于可扩展 DIMM 的近数据处理加速器
Load-balanced Gather-scatter Patterns for Sparse Deep Neural Networks
稀疏深度神经网络的负载平衡聚集-分散模式
  • DOI:
  • 发表时间:
    2021-12-20
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fei Sun;Minghai Qin;Tianyun Zhang;Xiaolong Ma;Haoran Li;Junwen Luo;Zihao Zhao;Yen;Yuan Xie
  • 通讯作者:
    Yuan Xie
Exploiting Heterogeneity for Energy Efficiency in Chip Multiprocessors
利用芯片多处理器的异构性提高能源效率
The impact of correlation between NBTI and TDDB on the performance of digital circuits
NBTI与TDDB相关性对数字电路性能的影响
National Level, City Level Auditor Industry Specialization and Analyst Forecast Properties
国家级、市级审计师行业专业化和分析师预测属性

Yuan Xie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuan Xie', 18)}}的其他基金

SHF:SMALL:Collaborative Research: Exploring Nonvolatility of Emerging Memory Technologies for Architecture Design
SHF:SMALL:合作研究:探索新兴内存技术的非易失性以用于架构设计
  • 批准号:
    1816833
  • 财政年份:
    2018
  • 资助金额:
    $ 11.45万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Ula! - An Integrated Deep Neural Network (DNN) Acceleration Framework with Enhanced Unsupervised Learning Capability
SPX:合作研究:乌拉!
  • 批准号:
    1725447
  • 财政年份:
    2017
  • 资助金额:
    $ 11.45万
  • 项目类别:
    Standard Grant
II-New: RICARDO: Research Infrastructure for Circuit and Architecture Design with Emerging Technologies
II-新:RICARDO:利用新兴技术进行电路和架构设计的研究基础设施
  • 批准号:
    1730309
  • 财政年份:
    2017
  • 资助金额:
    $ 11.45万
  • 项目类别:
    Standard Grant
XPS: FULL: DSD: Collaborative Research: Parallelizing and Accelerating Metagenomic Applications
XPS:完整:DSD:协作研究:并行化和加速宏基因组应用
  • 批准号:
    1533933
  • 财政年份:
    2015
  • 资助金额:
    $ 11.45万
  • 项目类别:
    Standard Grant
SHF: Medium: ASKS - Architecture Support for darK Silicon
SHF:中:ASKS - 对 darK Silicon 的架构支持
  • 批准号:
    1500848
  • 财政年份:
    2014
  • 资助金额:
    $ 11.45万
  • 项目类别:
    Standard Grant
SHF: Medium: ASKS - Architecture Support for darK Silicon
SHF:中:ASKS - 对 darK Silicon 的架构支持
  • 批准号:
    1409798
  • 财政年份:
    2014
  • 资助金额:
    $ 11.45万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: STEMS: STatistic Emerging Memory Simulator
SHF:小型:协作研究:STEMS:统计新兴内存模拟器
  • 批准号:
    1218867
  • 财政年份:
    2012
  • 资助金额:
    $ 11.45万
  • 项目类别:
    Standard Grant
ADAMS: Architecture and Design Automation for 3D Multi-core Systems
ADAMS:3D 多核系统的架构和设计自动化
  • 批准号:
    0903432
  • 财政年份:
    2009
  • 资助金额:
    $ 11.45万
  • 项目类别:
    Standard Grant
Student Travel Support for International Symposium on High-Performance Computer Architecture (HPCA) 2010
2010 年高性能计算机架构 (HPCA) 国际研讨会的学生旅行支持
  • 批准号:
    0952841
  • 财政年份:
    2009
  • 资助金额:
    $ 11.45万
  • 项目类别:
    Standard Grant
CSR: Medium: Collaborative Research: Providing Predictable Timing for Task Migration in Embedded Multi-Core Environments (TiME-ME)
CSR:中:协作研究:为嵌入式多核环境中的任务迁移提供可预测的时序 (TiME-ME)
  • 批准号:
    0905365
  • 财政年份:
    2009
  • 资助金额:
    $ 11.45万
  • 项目类别:
    Continuing Grant

相似国自然基金

小分子代谢物Catechin与TRPV1相互作用激活外周感觉神经元介导尿毒症瘙痒的机制研究
  • 批准号:
    82371229
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
DHEA抑制小胶质细胞Fis1乳酸化修饰减轻POCD的机制
  • 批准号:
    82301369
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SETDB1调控小胶质细胞功能及参与阿尔茨海默病发病机制的研究
  • 批准号:
    82371419
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
PTBP1驱动H4K12la/BRD4/HIF1α复合物-PKM2正反馈环路促进非小细胞肺癌糖代谢重编程的机制研究及治疗方案探索
  • 批准号:
    82303616
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 11.45万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 11.45万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331302
  • 财政年份:
    2024
  • 资助金额:
    $ 11.45万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Technical Debt Management in Dynamic and Distributed Systems
合作研究:SHF:小型:动态和分布式系统中的技术债务管理
  • 批准号:
    2232720
  • 财政年份:
    2023
  • 资助金额:
    $ 11.45万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
  • 批准号:
    2326895
  • 财政年份:
    2023
  • 资助金额:
    $ 11.45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了