Classifying subfactors and fusion categories
对子因素和融合类别进行分类
基本信息
- 批准号:1500387
- 负责人:
- 金额:$ 14.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2016-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Symmetry plays an important role in mathematics and in the biological and physical sciences. For example, a theorem of Emmy Noether states that symmetries of physical systems, like time and space translation, correspond to conserved quantities, like energy and momentum, respectively. Von Neumann, in his study of quantum mechanics, discovered that certain operator algebras on Hilbert space describe symmetries of quantum systems. These von Neumann algebras are built from basic building blocks called factors. A subfactor is an inclusion of factors, and its representation theory encodes quantum symmetries. In the classical setting, the symmetries of a particular object form a group, like the collection of symmetries of a square or of a molecule. When one passes from the classical setting to the quantum setting, these groups are replaced by so-called quantum groups and tensor categories. Unitary tensor categories arise naturally in the study of subfactors, and in return, subfactor theory provides a wealth of techniques for classification and construction of examples. Moreover, the quantum doubles of unitary fusion categories are unitary modular categories, which are vital to research in topological phases of matter and topological quantum computation.The first aim of this project is the classification of subfactors and fusion categories. The small index subfactor classification program has seen recent success classifying up to index five, and the principal investigator will raise this index bound slightly above five. To raise the bound even further, up towards six, new techniques and obstructions are necessary. The project will also develop more techniques for studying infinite index subfactors, where there are relatively few results. The second aim is developing deeper connections between subfactors and free probability, C*-algebras, noncommutative geometry, and conformal field theory (CFT). Recent work of Guionnet, Jones, and Shlyakhtenko developed a connection between subfactors, random matrices, and free probability. With Hartglass, the principal investigator developed this connection, discovering new connections to C*-algebras and noncommutative geometry via work of Pimsner and Voiculescu. The project will continue to investigate these new developments. Finally, conformal nets on the circle intimately relate subfactors and CFT. In joint work with Henriques and Tener, the principal investigator will study conformal planar algebras, which are a common generalization of Jones's subfactor planar algebras and genus-zero Segal CFT. Tener and the principal investigator anticipate a classification in terms of module categories for the representation category of this CFT. They also conjecture the subfactor/planar algebra duality extends to a duality between conformal planar algebras and certain morphisms in the 3-category of conformal nets.
对称性在数学以及生物学和物理科学中起着重要作用。例如,艾米(Emmy)noether的定理表明,如时间和空间翻译(如时间和空间平移)的对称性分别对应于能量和动量等保守数量。冯·诺伊曼(Von Neumann)在量子力学的研究中发现,希尔伯特空间上的某些操作员代数描述了量子系统的对称性。这些von Neumann代数是由称为因素的基本构建块构建的。子因子是因素的包含,其表示理论编码量子对称性。在经典环境中,特定对象的对称性形成一个组,例如平方或分子的对称性的集合。当一个人从经典设置传递到量子设置时,这些组将被所谓的量子组和张量类别取代。统一张量类别自然出现在亚比例的研究中,作为回报,亚比例理论为示例分类和构建提供了丰富的技术。此外,统一融合类别的量子双重类别是单一模块化类别,对于在物质和拓扑量子计算的拓扑阶段进行研究至关重要。该项目的第一个目的是分类子因子和融合类别。小型指数子因子分类计划已将最近的成功分类为索引五,主要研究者将提出该指数略高于五的指数。为了进一步提高束缚,必须采取新的技术和障碍物。该项目还将开发更多用于研究无限指数子因子的技术,而结果相对较少。第二个目的是在子因子与自由概率,C* - 代数,非交通性几何学和保形场理论(CFT)之间建立更深的联系。 Guionnet,Jones和Shlyakhtenko的最新工作在子因子,随机矩阵和自由概率之间建立了联系。借助Hartglass,首席研究人员建立了这种联系,发现了Pimsner和Voiculescu的工作发现与C* - 代数和非共同几何形状的新连接。该项目将继续调查这些新发展。最后,圆上的保形网紧密地关联了子因子和CFT。 在与Henriques和Tener的联合合作中,主要研究者将研究共形平面代数,这是对Jones的亚比例平面代数和Zer-Zero-Zero Segal CFT的普遍概括。 Tener和主要研究人员预计该CFT的表示类别的模块类别将进行分类。他们还猜想了亚比例/平面代数二元性延伸至保形平面代数与三类结合网中的某些形态之间的双重性。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Classification of Subfactors with Index at Most 5\frac{1}4
索引至多为 5frac{1}4 的子因子的分类
- DOI:10.1090/memo/1405
- 发表时间:2023
- 期刊:
- 影响因子:1.9
- 作者:Afzaly, Narjess;Morrison, Scott;Penneys, David
- 通讯作者:Penneys, David
共 1 条
- 1
David Penneys其他文献
A Planar Calculus for Infinite Index Subfactors
无限指数子因子的平面微积分
- DOI:10.1007/s00220-012-1627-410.1007/s00220-012-1627-4
- 发表时间:20112011
- 期刊:
- 影响因子:2.4
- 作者:David PenneysDavid Penneys
- 通讯作者:David PenneysDavid Penneys
CALCULATING TWO-STRAND JELLYFISH RELATIONS
计算两股水母的关系
- DOI:10.2140/pjm.2015.277.46310.2140/pjm.2015.277.463
- 发表时间:20132013
- 期刊:
- 影响因子:0.6
- 作者:David Penneys;E. PetersDavid Penneys;E. Peters
- 通讯作者:E. PetersE. Peters
Subfactors of index exactly 5
指数的子因子恰好为 5
- DOI:
- 发表时间:20152015
- 期刊:
- 影响因子:0
- 作者:Masaki Izumi;Scott Morrison;David Penneys;Emily Peters;and Noah SnyderMasaki Izumi;Scott Morrison;David Penneys;Emily Peters;and Noah Snyder
- 通讯作者:and Noah Snyderand Noah Snyder
The embedding theorem for finite depth subfactor planar algebras
有限深度子因子平面代数的嵌入定理
- DOI:10.4171/qt/2310.4171/qt/23
- 发表时间:20102010
- 期刊:
- 影响因子:0
- 作者:V. Jones;David PenneysV. Jones;David Penneys
- 通讯作者:David PenneysDavid Penneys
Lifting shadings on symmetrically self-dual
subfactor planar algebras
对称自对偶子因子平面代数的提升阴影
- DOI:10.1090/conm/747/1503810.1090/conm/747/15038
- 发表时间:20172017
- 期刊:
- 影响因子:0
- 作者:Zhengwei Liu;S. Morrison;David PenneysZhengwei Liu;S. Morrison;David Penneys
- 通讯作者:David PenneysDavid Penneys
共 23 条
- 1
- 2
- 3
- 4
- 5
David Penneys的其他基金
Conference: 2023 Great Plains Operator Theory Symposium
会议:2023年大平原算子理论研讨会
- 批准号:22477322247732
- 财政年份:2023
- 资助金额:$ 14.48万$ 14.48万
- 项目类别:Standard GrantStandard Grant
Quantum Symmetries: Subfactors, Topological Phases, and Higher Categories
量子对称性:子因子、拓扑相和更高类别
- 批准号:21543892154389
- 财政年份:2022
- 资助金额:$ 14.48万$ 14.48万
- 项目类别:Standard GrantStandard Grant
2019 East Coast Operator Algebra Symposium
2019东海岸算子代数研讨会
- 批准号:19362831936283
- 财政年份:2019
- 资助金额:$ 14.48万$ 14.48万
- 项目类别:Standard GrantStandard Grant
CAREER: Representing and Classifying Enriched Quantum Symmetry
职业:丰富的量子对称性的表示和分类
- 批准号:16541591654159
- 财政年份:2017
- 资助金额:$ 14.48万$ 14.48万
- 项目类别:Continuing GrantContinuing Grant
Classifying subfactors and fusion categories
对子因素和融合类别进行分类
- 批准号:16559121655912
- 财政年份:2016
- 资助金额:$ 14.48万$ 14.48万
- 项目类别:Standard GrantStandard Grant
EAPSI: Multicolored Planar Algebras and Quadrilaterals of Subfactors
EAPSI:多彩平面代数和子因子四边形
- 批准号:10155711015571
- 财政年份:2010
- 资助金额:$ 14.48万$ 14.48万
- 项目类别:Fellowship AwardFellowship Award
相似国自然基金
基于温度相关声子谱模型的通用热中子截面产生技术及影响因素研究
- 批准号:11905174
- 批准年份:2019
- 资助金额:30.0 万元
- 项目类别:青年科学基金项目
智能电网环境下的考虑风险因素的安全经济运行完全分布式快速优化研究
- 批准号:51767003
- 批准年份:2017
- 资助金额:36.0 万元
- 项目类别:地区科学基金项目
瓦松愈伤组织反应器高效培养机制和提取物的药理活性研究
- 批准号:31660080
- 批准年份:2016
- 资助金额:39.0 万元
- 项目类别:地区科学基金项目
PM2.5结合态氡及子体气溶胶形成机理及其影响因素研究
- 批准号:11565002
- 批准年份:2015
- 资助金额:41.0 万元
- 项目类别:地区科学基金项目
口腔扁平苔藓遗传-环境因素交互作用及协同致病机理研究
- 批准号:81470746
- 批准年份:2014
- 资助金额:73.0 万元
- 项目类别:面上项目
相似海外基金
転写因子・酵素ドメイン融合タンパク質による酢酸応答機構の解明
通过转录因子/酶结构域融合蛋白阐明乙酸反应机制
- 批准号:23K0498623K04986
- 财政年份:2023
- 资助金额:$ 14.48万$ 14.48万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Study of innovative speeding-up of main-variables elimination of multivariate polynomial systems
多元多项式系统主变量消元创新加速研究
- 批准号:18K0338918K03389
- 财政年份:2018
- 资助金额:$ 14.48万$ 14.48万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Targeting circadian clock genes in leukemia treatment
白血病治疗中针对昼夜节律基因
- 批准号:18K0836218K08362
- 财政年份:2018
- 资助金额:$ 14.48万$ 14.48万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
リガンド依存的な濃度変化を利用したタンパク質の機能制御
使用配体依赖性浓度变化控制蛋白质功能
- 批准号:17J0810817J08108
- 财政年份:2017
- 资助金额:$ 14.48万$ 14.48万
- 项目类别:Grant-in-Aid for JSPS FellowsGrant-in-Aid for JSPS Fellows
Classifying subfactors and fusion categories
对子因素和融合类别进行分类
- 批准号:16559121655912
- 财政年份:2016
- 资助金额:$ 14.48万$ 14.48万
- 项目类别:Standard GrantStandard Grant