SusChEM: Nanoscale Insight into Electric Fatigue of Lead-Free Piezoelectric Ceramics
SusChEM:无铅压电陶瓷电疲劳的纳米级洞察
基本信息
- 批准号:1465254
- 负责人:
- 金额:$ 46.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL DESCRIPTION: Lead interferes with many body processes, including the development of the nervous system, and therefore is particularly toxic to children, and can cause permanent learning and behavior disorders. Regulations restricting lead use, such as enforced recycling of lead-acid batteries of automobiles and the ban of leaded gasoline and lead paint, have greatly reduced lead exposure in the developed world since the 1970s. However, lead is one of the most produced metals in the world and is still widely used in various products. Even today, lead poisoning remains one of the largest environmental medicine problems in terms of numbers of people exposed and the public health toll it takes. In electronic devices and medical instruments, lead is primarily used in piezoelectric elements. These elements convert electrical signals into acoustic signals and are critical for underwater communications and ultrasound medical imaging. To further reduce lead contamination and create a sustainable environment for future generations, currently used lead-containing piezoelectric materials must be replaced by lead-free ones. This project on fundamental research aims to identify environmentally-friendly compositions for the multi-billion dollar piezoelectrics industry. The outcome has the potential to greatly benefit both human health and the environment. TECHNICAL DETAILS: The core elements in piezoelectric devices are made of lead zirconate titanate ceramics, which contain more than 60 wt.% of lead. The toxicity of lead has raised serious environmental concerns and legislations on restriction of its use have driven extensive worldwide research on the development of lead-free piezoelectric materials. Significant progress has been made in the past decade in composition design and processing control and the research community is now being prompted to move these scientific achievements into fruitful environmentally safe products. As such, fundamental issues related to performance stability and device reliability need to be addressed thoroughly and immediately. In real devices during service, these ceramics are almost invariably driven by cyclic electric or mechanical forces, and eventually their performances deteriorate due to fatigue. Electric fatigue degradation is the major concern for stability and reliability of piezoelectric devices utilizing lead-free ceramics. In this project, the researchers at Iowa State are investigating the microstructural mechanisms of electric fatigue through electrically cycling lead-free ceramic specimens inside the transmission electron microscope for the first time. Such innovative in situ studies can identify the primary microstructural feature that leads to fast fatigue degradation and therefore, will help find ways to alleviate the property degradation. Lead-free compositions can then replace lead zirconate titanate in a wide range of engineering and medical technologies, which greatly help to create a sustainable future for children. This project is also designed to have a broad impact on graduate and undergraduate education by training students in cutting-edge materials research techniques. Furthermore, an App for iPads on the toxicity of lead is under development for demonstrations to high school students and undergraduate students.
非技术描述:铅会干扰许多身体过程,包括神经系统的发展,因此对儿童特别有毒,可能导致永久的学习和行为障碍。自1970年代以来,限制铅使用铅的法规,例如强迫汽车的铅酸电池回收以及禁令禁止铅汽油和铅涂料。但是,铅是世界上生产最多的金属之一,并且仍然在各种产品中广泛使用。即使到了今天,就暴露的人数及其带来的公共卫生损失而言,铅中毒仍然是最大的环境医学问题之一。在电子设备和医疗仪器中,铅主要用于压电元素。这些元素将电信号转换为声学信号,对于水下通信和超声医学成像至关重要。为了进一步减少铅污染并为子孙后代创造可持续的环境,当前使用的含铅压电材料必须由无铅的压电材料代替。该基础研究项目旨在确定数十亿美元压电行业的环保作品。结果有可能极大地使人类健康和环境受益。技术细节:压电设备中的核心元素是由铅锆酸钛酸陶瓷制成的,其中包含超过60 wt的铅。铅的毒性引起了严重的环境问题,并对限制其使用的立法引发了有关无铅压电材料发展的全球广泛研究。在过去的十年中,在组成设计和处理控制方面取得了重大进展,现在正在促使研究界将这些科学成就转移到富有成果的环境安全产品中。这样,与性能稳定性和设备可靠性有关的基本问题需要立即彻底解决。在服务过程中,这些陶瓷几乎总是由环状电或机械力驱动,最终由于疲劳而导致其性能恶化。电疲劳降解是利用无铅陶瓷的压电设备的稳定性和可靠性的主要关注点。在这个项目中,爱荷华州的研究人员首次通过无电气循环陶瓷标本来研究电疲劳的微观结构机制。这种创新的原位研究可以识别导致快速疲劳降解的主要微观结构特征,因此将有助于找到减轻该财产降解的方法。然后,无铅构图可以在广泛的工程和医疗技术中取代铅锆钛酸钛酸钛酸盐,这极大地有助于为儿童创造可持续的未来。该项目还旨在通过培训学生的尖端材料研究技术对研究生和本科教育产生广泛的影响。此外,iPad的应用程序正在开发有关铅的毒性,以向高中生和本科生进行示范。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
In-situ TEM study of the aging micromechanisms in a BaTiO3-based lead-free piezoelectric ceramic
- DOI:10.1016/j.jeurceramsoc.2018.03.049
- 发表时间:2018-08
- 期刊:
- 影响因子:5.7
- 作者:Z. Fan;X. Tan
- 通讯作者:Z. Fan;X. Tan
A comparative study of the polarization degradation mechanisms during electric cycling in (Bi1/2Na1/2)TiO3-based relaxors
- DOI:10.1016/j.scriptamat.2019.11.061
- 发表时间:2020-03
- 期刊:
- 影响因子:6
- 作者:Z. Fan;X. Tan
- 通讯作者:Z. Fan;X. Tan
Phase-composition dependent domain responses in (K0.5Na0.5)NbO3-based piezoceramics
- DOI:10.1016/j.jeurceramsoc.2019.11.046
- 发表时间:2020-04-01
- 期刊:
- 影响因子:5.7
- 作者:Fan, Zhongming;Zhang, Shujun;Tan, Xiaoli
- 通讯作者:Tan, Xiaoli
Dual-stimuli in-situ TEM study on the nonergodic/ergodic crossover in the 0.75(Bi 1/2 Na 1/2 )TiO 3 –0.25SrTiO 3 relaxor
0.75(Bi 1/2 Na 1/2 )TiO 3 →0.25SrTiO 3 弛豫器非遍历/遍历交叉的双激励原位TEM研究
- DOI:10.1063/1.5093510
- 发表时间:2019
- 期刊:
- 影响因子:4
- 作者:Fan, Zhongming;Tan, Xiaoli
- 通讯作者:Tan, Xiaoli
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaoli Tan其他文献
Genomic analysis of Brevundimonas mediterranea D151-2-6 isolated from hadal sediment of the Pacific Ocean
从太平洋深渊沉积物中分离的地中海短波单胞菌 D151-2-6 的基因组分析
- DOI:
10.1016/j.margen.2020.100787 - 发表时间:
2020 - 期刊:
- 影响因子:1.9
- 作者:
Siyuan Wang;Libo Yu;Xiaoli Tan;Xiaorong Cao;Xixiang Tang;Huahua Jian;Xiang Xiao - 通讯作者:
Xiang Xiao
Super-Efficient Extraction of U(Vi) by the Dual-Functional Sodium Vanadate (Na2v6o16·2h2o) Nanobelts
双功能钒酸钠 (Na2v6o16·2h2o) 纳米带超高效萃取 U(Vi)
- DOI:
10.2139/ssrn.4096061 - 发表时间:
2022 - 期刊:
- 影响因子:15.1
- 作者:
Yifeng Zhang;Yawen Cai;Shuo Zhang;Feixue Gao;Zhimin Lv;Ming Fang;Peng Zhao;Xiaoli Tan;Baowei Hu;Mingguang Kong;Xiangke Wang - 通讯作者:
Xiangke Wang
Extraction of uranium from water: A strategy based on tribocatalysis
- DOI:
10.1016/j.materresbull.2024.113109 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:
- 作者:
Baoyi Liu;Shuo Zhang;Zihao Ye;Feixue Gao;Peng Zhao;Ming Fang;Bin Ma;Kangle Shang;Xiaoli Tan - 通讯作者:
Xiaoli Tan
Homogeneous Ni nanoparticles anchored on mesoporous N-doped carbon as highly efficient catalysts for Cr(VI), tetracycline and dyes reduction
锚定在介孔 N 掺杂碳上的均质 Ni 纳米粒子作为 Cr(VI)、四环素和染料还原的高效催化剂
- DOI:
10.1016/j.apsusc.2021.151748 - 发表时间:
2021-10 - 期刊:
- 影响因子:6.7
- 作者:
Zhimin Lv;Weiwei Chen;Yawen Cai;Kechang Chen;Kexin Li;Ming Fang;Xiaoli Tan;Xiangke Wang - 通讯作者:
Xiangke Wang
A new time-saving transformation system for Brassica napus
一种新的省时甘蓝型油菜转化系统
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
F. Kong;Jin Li;Xiaoli Tan;L. Zhang;Z. Zhang;C. Qi;X. K. Ma - 通讯作者:
X. K. Ma
Xiaoli Tan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaoli Tan', 18)}}的其他基金
Restricting Ferroelectric Domain Wall Motion with Volume Defects--Nanoprecipitates
用体积缺陷限制铁电畴壁运动——纳米沉淀
- 批准号:
2110264 - 财政年份:2021
- 资助金额:
$ 46.28万 - 项目类别:
Continuing Grant
Nanoscale Phase Transition in Free-Standing Dielectric Thin Foils
独立式电介质薄箔中的纳米级相变
- 批准号:
1700014 - 财政年份:2017
- 资助金额:
$ 46.28万 - 项目类别:
Continuing Grant
Origin of the Electric Field-induced Strain in Lead-free Piezoelectric Ceramics
无铅压电陶瓷中电场感应应变的起源
- 批准号:
1037898 - 财政年份:2010
- 资助金额:
$ 46.28万 - 项目类别:
Continuing Grant
Mechanics of Multi-responsive Ceramics for Electrical Capacitors with High power/Energy density
高功率/能量密度电容器用多响应陶瓷力学
- 批准号:
1027873 - 财政年份:2010
- 资助金额:
$ 46.28万 - 项目类别:
Standard Grant
CAREER: The Evolution of Polar Nanoregions and Its Coupling with Cation-Ordered Domains in Pb(B'B'')O3 Relaxor Ferroelectrics
职业生涯:Pb(BB)O3 弛豫铁电体中极性纳米区的演化及其与阳离子有序域的耦合
- 批准号:
0346819 - 财政年份:2004
- 资助金额:
$ 46.28万 - 项目类别:
Continuing Grant
相似国自然基金
纳米级相变薄膜的反常结晶动力学行为及其存储器件特性研究
- 批准号:62374096
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
单粒子效应对基于纳米级异构多核SoC的卷积神经网络系统影响机理研究
- 批准号:12305303
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
先进光源用X射线椭球聚焦镜的纳米级制作和检测方法研究
- 批准号:12305365
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
肿瘤细胞纳米级凋亡小体诱导获得性胸腺耐受效应的作用与机制研究
- 批准号:32300576
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
基于亚纳米级高速摩擦抛光下的金刚石亚表面跨尺度损伤演变与控制机制
- 批准号:52302036
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Deciphering the Glycan Code in Human Alzheimer's Disease Brain
破译人类阿尔茨海默病大脑中的聚糖代码
- 批准号:
10704673 - 财政年份:2023
- 资助金额:
$ 46.28万 - 项目类别:
2023 Muscle: Excitation-Contraction Coupling Gordon Research Conference and Gordon Research Seminar
2023肌肉:兴奋-收缩耦合戈登研究会议暨戈登研究研讨会
- 批准号:
10606049 - 财政年份:2023
- 资助金额:
$ 46.28万 - 项目类别:
Regulation of KRAS plasma membrane targeting by defined glycosphingolipids.
通过特定的鞘糖脂调节 KRAS 质膜靶向。
- 批准号:
10718459 - 财政年份:2023
- 资助金额:
$ 46.28万 - 项目类别:
Engineering Surface Coatings for Localized Delivery of Therapeutic Extracellular Vesicles
用于治疗性细胞外囊泡局部递送的工程表面涂层
- 批准号:
10719257 - 财政年份:2023
- 资助金额:
$ 46.28万 - 项目类别: