EAGER-DynamicData: Collaborative: Exploiting the Dynamically Architectural Configurability for Compressed Sensing
EAGER-DynamicData:协作:利用压缩感知的动态架构可配置性
基本信息
- 批准号:1462473
- 负责人:
- 金额:$ 4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-15 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Sensors or sensing systems are increasingly critical in a variety of applications including national security, surveillance monitoring and health care. Those systems should function with minimal hardware recourses, minimal communications and minimal computation overhead, and these efficiencies can dramatically improve the performance, reliability and usability, which can broaden the overall application scope of sensor systems. This EAGER project is to pursue preliminary results of dynamic configurability of architectural and circuit models in sensing systems, and the proposed research will have significant impacts on a range of sensing applications under the resource-constrained environment. For example, in large-scale sensor networks or implantable sensors, energy is tightly constrained. The ultimate goal of the research is to exploit the configurability and dynamics of sensing systems to improve the overall system efficiency. This project serves as an expedition to investigate the dynamically architectural sensing techniques and may open a new research direction of theory and practice in the signal acquisition. Upon the success of this project, a better performance-energy tradeoff in the sensing system will be obtained, which can further strengthen its advantage compared to other sampling techniques, and extend its application regime. To broaden the impacts of this project, PIs will disseminate the research results through multiple channels, including conference presentation, journal publication and open research material online. PIs also plan to integrate the research outcomes into the curriculum development and develop a new research seminar on related topics. The project will provide research opportunities for undergraduate students and researchers from underrepresented groups.Specifically, this EAGER project investigates the dynamic configurability of parameterized Compressed Sensing architecture. With the physical and architectural models, the Compressed Sensing architecture is flexible and provides a larger design/configuration space, and can adapt towards different signal structures and use conditions. The research work is expected to explore a deeper bound of the performance-energy by exploiting the architectural configurability with physical models. To this aim, a set of research tasks will be performed in this project, and the technical thrusts can be summarized from three aspects. First, the project will explore the configurability at both architectural- and circuit- levels in Compressed Sensing, incorporating signal structure variations. Multiple factors in the Compressed Sensing will be investigated. Second, by integrating physical models into the Compressed Sensing architecture, a larger design space will be discovered and defined. The benefit of the performance-energy trade-off will be demonstrated in the new space. Third, a set of novel algorithms will be developed for efficient configuration search in the design space. Several deterministic and heuristic strategies will be investigated in the project.
在包括国家安全,监视监测和医疗保健在内的各种应用中,传感器或传感系统越来越重要。这些系统应使用最小的硬件回复,最小的通信和最小的计算开销,这些效率可以显着提高性能,可靠性和可用性,从而扩大传感器系统的整体应用范围。这个渴望的项目是在传感系统中追求建筑和电路模型动态可配置的初步结果,而拟议的研究将对资源受限环境下的一系列感应应用产生重大影响。例如,在大规模传感器网络或植入传感器中,能量受到严格的约束。该研究的最终目标是利用传感系统的可配置性和动力学来提高整体系统效率。该项目是研究动态体系结构感应技术的探险,并可能在信号获取中打开理论和实践的新研究方向。在该项目的成功之后,将在传感系统中获得更好的性能 - 能量折衷,这可以与其他采样技术相比,进一步增强其优势,并扩展其应用程序制度。为了扩大该项目的影响,PI将通过多个渠道(包括会议演示,期刊出版物和在线开放研究材料)通过多个渠道传播研究结果。 PIS还计划将研究成果整合到课程开发中,并开发有关相关主题的新研究研讨会。该项目将为本科生和代表性不足的小组的研究人员提供研究机会。特别是,该渴望的项目研究了参数化压缩的传感体系结构的动态可配置性。借助物理和体系结构模型,压缩的传感体系结构是灵活的,并提供了更大的设计/配置空间,并且可以适应不同的信号结构和使用条件。预计研究工作将通过使用物理模型利用体系结构可配置性来探索性能能源的更深层次。为此,将在该项目中执行一系列研究任务,并且可以从三个方面总结技术推力。首先,该项目将在压缩感应中探索在体系结构和电路水平上的可配置性,并结合信号结构变化。将研究压缩感中的多个因素。其次,通过将物理模型集成到压缩的传感体系结构中,将发现和定义较大的设计空间。性能 - 能量折衷的好处将在新领域展示。第三,将开发一组新型算法,以在设计空间中有效的配置搜索。该项目将研究几种确定性和启发式策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhanpeng Jin其他文献
Data Imputation in Patient Monitoring : An Exploration of Significance of Patient Demographics
患者监测中的数据插补:患者人口统计学意义的探索
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
David M. Arnold;Qiong Gui;Yu Chen;Zhanpeng Jin - 通讯作者:
Zhanpeng Jin
Experimental isothermal section of the Nb-Ni-Ru ternary system at 1100 °C
Nb-Ni-Ru三元体系1100℃实验等温截面
- DOI:
10.1016/j.jallcom.2019.151801 - 发表时间:
2019 - 期刊:
- 影响因子:6.2
- 作者:
Qian-Xin Long;Jingjing Zhou;Qiancheng Sun;Yong Du;Shuhong Liu;Zhanpeng Jin;Qingrong Yao;Jianqiu Deng;Huaiying Zhou;Shun-Li Shang;Zi-Kui Liu - 通讯作者:
Zi-Kui Liu
Accurate tumor localization and tracking in radiation therapy using wireless body sensor networks
使用无线身体传感器网络在放射治疗中准确定位和跟踪肿瘤
- DOI:
10.1016/j.compbiomed.2014.04.008 - 发表时间:
2014 - 期刊:
- 影响因子:7.7
- 作者:
M. Pourhomayoun;Zhanpeng Jin;M. Fowler - 通讯作者:
M. Fowler
EarEcho: Using Ear Canal Echo for Wearable Authentication
- DOI:
10.1145/3351239 - 发表时间:
2019-09-01 - 期刊:
- 影响因子:0
- 作者:
Yang Gao;Wei Wang;Zhanpeng Jin - 通讯作者:
Zhanpeng Jin
A self-healing autonomous neural network hardware for trustworthy biomedical systems
用于值得信赖的生物医学系统的自愈自主神经网络硬件
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Zhanpeng Jin;A. Cheng - 通讯作者:
A. Cheng
Zhanpeng Jin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhanpeng Jin', 18)}}的其他基金
TWC SBE: Medium: Collaborative: Brain Hacking: Assessing Psychological and Computational Vulnerabilities in Brain-based Biometrics
TWC SBE:媒介:协作:大脑黑客:评估基于大脑的生物识别技术中的心理和计算漏洞
- 批准号:
1840790 - 财政年份:2018
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
TWC SBE: Medium: Collaborative: Brain Hacking: Assessing Psychological and Computational Vulnerabilities in Brain-based Biometrics
TWC SBE:媒介:协作:大脑黑客:评估基于大脑的生物识别技术中的心理和计算漏洞
- 批准号:
1564046 - 财政年份:2016
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
TWC SBE: Small: Collaborative: Brain Password: Exploring A Psychophysiological Approach for Secure User Authentication
TWC SBE:小型:协作:大脑密码:探索安全用户身份验证的心理生理学方法
- 批准号:
1422417 - 财政年份:2014
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
相似海外基金
EAGER-DynamicData: Collaborative Research: Data-driven morphing of parsimonious models for the description of transient dynamics in complex systems
EAGER-DynamicData:协作研究:数据驱动的简约模型变形,用于描述复杂系统中的瞬态动力学
- 批准号:
1462254 - 财政年份:2015
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Collaborative Research: EAGER-DynamicData: Machine Intelligence for Dynamic Data-Driven Morphing of Nodal Demand in Smart Energy Systems
合作研究:EAGER-DynamicData:智能能源系统中节点需求动态数据驱动变形的机器智能
- 批准号:
1462393 - 财政年份:2015
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
EAGER-DynamicData: Collaborative Research: Data-driven morphing of parsimonious models for the description of transient dynamics in complex systems
EAGER-DynamicData:协作研究:数据驱动的简约模型变形,用于描述复杂系统中的瞬态动力学
- 批准号:
1462241 - 财政年份:2015
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Collaborative Research: EAGER-DynamicData: Machine Intelligence for Dynamic Data-Driven Morphing of Nodal Demand in Smart Energy Systems
合作研究:EAGER-DynamicData:智能能源系统中节点需求动态数据驱动变形的机器智能
- 批准号:
1462404 - 财政年份:2015
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Collaborative Research: EAGER-DynamicData: Probabilistic Analysis of Dynamic X-ray Diffraction Data: Toward Validated Computational Models for Polycrystalline Plasticity
合作研究:EAGER-DynamicData:动态 X 射线衍射数据的概率分析:建立经过验证的多晶塑性计算模型
- 批准号:
1462387 - 财政年份:2015
- 资助金额:
$ 4万 - 项目类别:
Standard Grant