BDD: Efficient and Scalable Collection, Analytics and Processing of Big Data for Disaster Applications
BDD:灾难应用大数据的高效且可扩展的收集、分析和处理
基本信息
- 批准号:1461914
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-01 至 2020-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The outcomes from this project is to assist human operators in their disaster management coordination and planning, such as directing a medical physician's team to their nearest cluster of affected people in a region to administer medications as necessary, or finding a safe route for evacuation of affected people. Sensor data integrated with microblogs such as Tweets help identifying some local events and people's sentiments, which are significantly useful in handling/understanding disaster situations. It will also benefit other applications such as real-time tracking of road/driving conditions in vehicular networks.This research is conducted jointly with Osaka University in Japan, to benefit both the universities in enhancing not only their knowledge but also to learn global perspective in solving important problems. The research team is designing schemes for dynamic and collaborative data compression and multi-streams compression of multi-dimensional sensor data with error correction and recovery for addressing the energy efficiency and bandwidth limitation issues. Compression schemes exploit temporal locality and delta compression to provide better bandwidth utilization. Different methods for measuring error are designed and compared for the compressibility and actual error for variations in methods of utilizing the error tolerance. In addition, the team is developing algorithms for highly scalable indexing schemes for efficient data retrieval involving mainly range queries, top-k query, ranked-based searches and snapshot queries for multi-dimensional sensor data from different data sources to address the issue of timely dissemination. Hilbert Curve based linearization technique integrated with an overlay network is designed to (1) map multidimensional attributes onto a single dimension while preserving its data locality, and (2) to create a balanced network by associating only one node with each leaf of the virtual tree and then partition the multidimensional search space into subspaces and assign each node to a unique subspace. This allows an overlay network to start from a predefined prefix to handle data skewness. This research is also designing a scheme for using microblog messages as social sensors for efficient integration with other sensor data. We are using machine-learning techniques to match each message with its associate location based on the characteristics of the message. The results will be validated and evaluated using the sensor cloud test-bed available at Missouri S&T.
该项目的结果是协助人类运营商进行灾难管理协调和计划,例如将医疗医师的团队指导到他们在该地区最近受影响的人群中,以根据需要进行药物治疗,或者找到安全撤离受影响人的途径。与微博集成的传感器数据,例如Tweets,有助于识别一些当地事件和人们的情感,这些事件和人们的情感在处理/理解灾难情况下非常有用。它还将受益于其他应用,例如对车辆网络中道路/驾驶条件的实时跟踪。这项研究与日本的大阪大学共同进行,以使两家大学受益,不仅可以增强其知识,而且还可以学习解决重要问题的全球观点。研究团队正在设计用于动态和协作数据压缩的方案,并设计具有错误校正和恢复的多维传感器数据的多流式压缩,以解决能源效率和带宽限制问题。压缩方案利用时间区域和增量压缩以提供更好的带宽利用率。设计和比较了不同的测量误差方法的方法,以使用误差耐性方法的可压缩性和实际误差。此外,该团队正在开发用于高度可扩展的索引方案的算法,以进行有效的数据检索,其中涉及范围查询,TOP-K查询,基于排名的基于排名的搜索和快照查询以及来自不同数据源的多维传感器数据的快照查询,以解决及时散发问题的问题。基于Hilbert曲线与覆盖网络集成的基于Hilbert曲线的线性化技术的设计旨在(1)将多维属性映射到单个维度上,同时保留其数据局部性,(2)通过将一个节点与虚拟树的每个叶子相关联,然后将一个节点与虚拟树的每个叶子关联,然后将多维搜索空间分配为每个Node supspace并分配每个Node subspace,并将其分配给独特的subspace。这允许覆盖网络从预定义的前缀开始以处理数据偏斜。这项研究还设计了一种计划,用于使用微博信息作为社会传感器,以与其他传感器数据有效整合。我们正在使用机器学习技术根据消息的特征将每个消息及其关联位置匹配。将使用密苏里州S&T的传感器云测试床对结果进行验证和评估。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M-Grid: a distributed framework for multidimensional indexing and querying of location based data
- DOI:10.1007/s10619-017-7194-0
- 发表时间:2017-03
- 期刊:
- 影响因子:1.2
- 作者:Shashank Kumar;S. Madria;M. Linderman
- 通讯作者:Shashank Kumar;S. Madria;M. Linderman
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sanjay Madria其他文献
Investigating Impact of Quorum Construction on Data Processing in Mobile Ad Hoc Networks
研究群体构建对移动自组织网络中数据处理的影响
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Takahiro Hara;Sanjay Madria;Shojiro Nishio - 通讯作者:
Shojiro Nishio
Trusted Digital Twin Network for Intelligent Vehicles
智能汽车可信数字孪生网络
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Asad Malik;Ayan Roy;Sanjay Madria - 通讯作者:
Sanjay Madria
NeuEmot: Mitigating Neutral Label and Reclassifying False Neutrals in the 2022 FIFA World Cup via Low-Level Emotion
NeuEmot:通过低级情绪在 2022 年 FIFA 世界杯上减轻中立标签并重新分类虚假中立
- DOI:
10.1109/bigdata59044.2023.10386146 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Ademola Adesokan;Sanjay Madria - 通讯作者:
Sanjay Madria
MELOC : Memory and Location Optimized Caching Model for Small Mobile Ad hoc Networks
MELOC:小型移动自组织网络的内存和位置优化缓存模型
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Lekshmi Chidambaram;Sanjay Madria;Mark Linderman;Takahiro Hara - 通讯作者:
Takahiro Hara
中国東北部における土地利用
东北地区土地利用
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Lekshmi Chidambaram;Sanjay Madria;Mark Linderman;Takahiro Hara;氷見山幸夫 - 通讯作者:
氷見山幸夫
Sanjay Madria的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sanjay Madria', 18)}}的其他基金
Collaborative Research: CISE-MSI: DP: IIS: Event Detection and Knowledge Extraction via Learning and Causality Analysis for Resilience Emergency Response
协作研究:CISE-MSI:DP:IIS:通过学习和因果关系分析进行事件检测和知识提取,以实现弹性应急响应
- 批准号:
2219615 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
REU Site: Research and Training Experience for Undergraduates in the Areas of Cybersecurity, Data Analytics and Blockchain for Securing Big Data and Cyber-Physical Systems
REU 网站:本科生在网络安全、数据分析和区块链领域的研究和培训经验,以保护大数据和网络物理系统
- 批准号:
2150210 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
REU Site: Research and Training Experience for Undergraduates in the Area of Secure Cloud Computing
REU网站:安全云计算领域本科生的研究和培训经验
- 批准号:
1460697 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
I/UCRC FRP: Collaborative: Risk Assessment Techniques for Off-line and On-line Security Evaluation of Cloud Computing
I/UCRC FRP:协作:云计算离线和在线安全评估的风险评估技术
- 批准号:
1332002 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Planning Grant: I/UCRC for Net-Centric Software and Systems Center at Missouri University of Science and Technology
规划资助:I/UCRC 密苏里科技大学网络中心软件和系统中心
- 批准号:
1156098 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
I/UCRC: Net-Centric SoftwareSystems Center Site at Missouri University of Science and Technology
I/UCRC:密苏里科技大学以网络为中心的软件系统中心站点
- 批准号:
1238321 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Travel Grant for Attending 31st IEEE Symposium on Reliable Distributed Systems (SRDS)
参加第 31 届 IEEE 可靠分布式系统 (SRDS) 研讨会的旅费补助
- 批准号:
1243626 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Travel Grant for Attending 30th IEEE Symposium on Reliable Distributed Systems (SRDS)
参加第 30 届 IEEE 可靠分布式系统 (SRDS) 研讨会的旅费补助
- 批准号:
1140273 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
REU Site: Research and Training Experience for Undergraduates in the Area of Sensor Computing
REU网站:传感器计算领域本科生的研究和培训经验
- 批准号:
0754959 - 财政年份:2008
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Wireless Test-bed for Mobile Computing Research
用于移动计算研究的无线测试台
- 批准号:
0323630 - 财政年份:2003
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
基于随机化的高效可扩展深度学习算法研究
- 批准号:62376131
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
区块链可扩展存储和高频运算高效算法的研究
- 批准号:62072326
- 批准年份:2020
- 资助金额:56 万元
- 项目类别:面上项目
全球数值天气预报谱模式的高效可扩展并行计算技术研究
- 批准号:41875121
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:面上项目
大规模网络下面向复杂DoS攻击的可扩展性增强的高效防御方法研究
- 批准号:61601107
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
几类具有良好可扩展性的高效并行自适应组合型GAMG法
- 批准号:11571293
- 批准年份:2015
- 资助金额:50.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Multi-Dimensional Photonic Accelerators for Scalable and Efficient Computing
职业:用于可扩展和高效计算的多维光子加速器
- 批准号:
2337674 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CAREER: Efficient and Scalable Large Foundational Model Training on Supercomputers for Science
职业:科学超级计算机上高效且可扩展的大型基础模型训练
- 批准号:
2340011 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Developing the world’s 1st scalable, end-to-end system for cost-efficient, sustainable cultivated pork meat production
开发世界上第一个可扩展的端到端系统,以实现经济高效、可持续的养殖猪肉生产
- 批准号:
10079403 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Collaborative R&D
PFI-RP: Novel Sensors for Efficient and Scalable Production of Indoor Crops
PFI-RP:用于高效、可规模化生产室内作物的新型传感器
- 批准号:
2329885 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant