CAREER: Combinatorial Methods in Low-Dimensional Topology
职业:低维拓扑中的组合方法
基本信息
- 批准号:1455132
- 负责人:
- 金额:$ 42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-06-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Topology refers broadly to the study of shapes, and low-dimensional topology refers specifically to their study in dimensions one through four. These dimensions are special from an anthropic perspective, since they model our everyday perception of the physical world, and from a mathematical perspective, since the phenomena they exhibit and the collection of techniques used to study them are rather different from those in higher dimensions. Many of these techniques used to study these phenomena involve combinatorics, the study of discrete structures. A central goal of this research project is to advance the combinatorial aspects of these techniques with a view towards concrete problems in the field. Alongside the research component, the PI proposes activities that integrate his research interests with education and training initiatives that reach audiences from the high school level to postdoctoral researchers. For instance, the PI is actively involved with mathematics enrichment at the high school level through the Hampshire College Summer Studies in Mathematics and Mathematical Staircase, Inc. In the context of these programs and in other mentoring activities, he seeks to inspire the discovery process and aid in the exposition of beautiful mathematics. A chief outreach activity in the project is a graduate summer school that will showcase several different perspectives on one central theme in low-dimensional topology, Dehn surgery.Amongst the various techniques that come to bear on low-dimensional topology are graphs of surface intersections, exemplified by the work of Gordon and Luecke, and Heegaard Floer homology, defined and developed by Ozsváth and Szabó. Both techniques have led to sensational progress on the main problems in low-dimensional topology. The two approaches lend very different perspectives on the subject, and they have complementary strengths and weaknesses. The surface intersection techniques are more direct and rely on the development of graph theoretic tools in order to draw topological conclusions. Floer homology methods are less direct but apply heavy machinery to a vast collection of problems. The PI specifically seeks to blend the combinatorial ideas stemming from these techniques and others with a view towards some of the driving problems in low-dimensional topology, spanning topics including the study of knot diagrams, Dehn surgery, and the curve complex.
拓扑广泛地指对形状的研究,而低维拓扑特指对一维到四维的研究,从人类的角度来看,这些维度很特殊,因为它们模拟了我们对物理世界的日常感知,从数学的角度来看。 ,由于它们表现出的现象以及用于研究它们的技术集合与更高维度的技术有很大不同,许多用于研究这些现象的技术都涉及组合学,因此该研究项目的一个中心目标是。推进这些的组合方面除了研究领域的具体问题外,PI还提出了将其研究兴趣与教育和培训计划相结合的活动,这些活动覆盖从高中到博士后研究人员的受众,例如,PI积极参与。通过汉普郡学院数学暑期研究和数学楼梯公司,在高中阶段丰富了数学知识。在这些项目和其他指导活动的背景下,他力求激发发现过程并帮助阐述美丽的数学。主要外展该项目的活动是一个研究生暑期学校,它将展示低维拓扑中一个中心主题的几种不同观点,即德恩手术。在低维拓扑中发挥作用的各种技术中包括表面相交图,例如Gordon 和 Luecke 的工作,以及 Ozsváth 和 Szabó 定义和开发的 Heegaard Floer 同调,这两种技术都在低维拓扑的主要问题上取得了轰动性的进展。表面相交技术更加直接,并且依赖于图论工具的发展来得出拓扑结论,弗洛尔同调方法不太直接,但将重型机械应用于大量集合。 PI 特别寻求将源自这些技术和其他技术的组合思想与低维拓扑中的一些驱动问题相结合,涵盖的主题包括图结的研究、Dehn 手术和复合曲线。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joshua Greene其他文献
Biological significance of genome‐wide DNA methylation profiles in keloids
疤痕疙瘩全基因组 DNA 甲基化谱的生物学意义
- DOI:
10.1002/lary.26063 - 发表时间:
2017-01-01 - 期刊:
- 影响因子:0
- 作者:
Lamont R Jones;Joshua Greene;K. Chen;G. Divine;D. Chitale;Veena V Shah;I. Datta;M. Worsham - 通讯作者:
M. Worsham
For the law, neuroscience changes nothing and everything.
对于法律来说,神经科学什么也改变不了,但却改变了一切。
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Joshua Greene;Jonathan Cohen - 通讯作者:
Jonathan Cohen
Examining the Associations Between Neighborhood Socioeconomic Status and the Potential Distribution of Four Urban Ecosystem Services in Rochester, NY
检查纽约州罗彻斯特社区社会经济地位与四种城市生态系统服务的潜在分布之间的关联
- DOI:
10.1002/pssa.200880475 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
Joshua Greene - 通讯作者:
Joshua Greene
Joshua Greene的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joshua Greene', 18)}}的其他基金
Combinatorial Methods in Low-Dimensional Topology
低维拓扑中的组合方法
- 批准号:
2005619 - 财政年份:2020
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Floer homology and low-dimensional topology
Florer同调和低维拓扑
- 批准号:
1207812 - 财政年份:2012
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Collaborative Research: Genetics of Moral Cognition
合作研究:道德认知的遗传学
- 批准号:
0952129 - 财政年份:2009
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Cognitive and Affective Neuroscience of Moral Judgment
道德判断的认知和情感神经科学
- 批准号:
0821978 - 财政年份:2008
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
相似国自然基金
混杂纤维ECC模壳式型钢高强混凝土组合柱抗震性能及设计方法研究
- 批准号:52308151
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于激光超声激励和非接触式感知的组合结构界面损伤精准成像方法研究
- 批准号:52378282
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
组合弹性结构的混合有限元方法
- 批准号:12301466
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
内置GFRP管的薄壁不锈钢管混凝土组合柱压弯性能与设计方法研究
- 批准号:52308172
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
考虑多模式传感器耦合机理的智能车辆分布式组合定位及在环测试方法研究
- 批准号:52302491
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Novel Parallelization Frameworks for Large-Scale Network Optimization with Combinatorial Requirements: Solution Methods and Applications
职业:具有组合要求的大规模网络优化的新型并行化框架:解决方法和应用
- 批准号:
2338641 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Human gut bacterial cell surface polysaccharides as a microbial nutrient source and target of immunoregulatory proteins shape gut microbiota structure and function
人肠道细菌细胞表面多糖作为微生物营养源和免疫调节蛋白的靶标塑造肠道微生物群的结构和功能
- 批准号:
10811932 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Chromosomal instability as a driver of non-small cell lung cancer immune evasion and brain metastasis
染色体不稳定性是非小细胞肺癌免疫逃避和脑转移的驱动因素
- 批准号:
10679841 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Charting somatic evolution via single-cell multiomics
通过单细胞多组学绘制体细胞进化图
- 批准号:
10909474 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Hemodynamic Contributions to Vascular Dysfunction in Pulmonary Arterial Hypertension
血流动力学对肺动脉高压血管功能障碍的影响
- 批准号:
10570134 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别: