CAREER: Enabling Distributed and In-Situ Analysis for Multidimensional Structured Data

职业:实现多维结构化数据的分布式和原位分析

基本信息

  • 批准号:
    1453430
  • 负责人:
  • 金额:
    $ 41.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2021-09-30
  • 项目状态:
    已结题

项目摘要

Advances in modern science have led to explosions of data across all science, technology, engineering, and mathematics (STEM) disciplines. Extracting meaningful knowledge from this large pool of information has become both complicated and costly. In fields like genomics and astronomy, where very large volumes of data are produced daily, it is necessary to store repositories throughout multiple, geographically distinct locations. This type of data allocation results in expensive computations and incomplete analyses. For health informatics and finances, data is typically isolated between research centers due to privacy, security, or cost issues. Again, the inability to have a global view of the data yields inaccurate outcomes at computation time. The classic centralized approach to analyzing data no longer produces optimal results; it has become a major bottleneck, hindering the advantages Big Data has to offer. Current solutions for distributed analysis still lack generality, scalability, or accuracy. This project aims to ameliorate problems in the management of distributed data while enabling scalable and accurate analyses. The project provides a comprehensive approach to handle data-to-knowledge extraction, representation, and learning at scale. Products of this research include: (1) an algorithmic suite of semantic projections and scalable learning methods for efficient data dimensionality reduction, pattern recognition, anomaly detection, and clustering, and (2) an open source middleware for coupling distributed data acquisition processes with in-situ analytics and crowd sourcing. These products will be made available through a GitHub repository at https://github.com/distributedreasoningatunm. Moreover, the crowd sourcing extension doubles as an educational platform, which aims to attract interest in the STEM fields.
现代科学的进步导致了所有科学,技术,工程和数学(STEM)学科的数据爆炸。从这些大量信息中提取有意义的知识既复杂又昂贵。在每天生产大量数据的基因组学和天文学等领域中,有必要在多个地理位置上不同的位置存储存储库。这种类型的数据分配导致昂贵的计算和不完整的分析。对于健康信息和财务,由于隐私,安全性或成本问题,研究中心之间通常在研究中心之间进行数据。同样,无法在计算时间内对数据的全局视图产生不准确的结果。分析数据的经典集中式方法不再产生最佳结果。它已成为一个主要的瓶颈,阻碍了大数据提供的优势。当前用于分布式分析的解决方案仍然缺乏通用性,可扩展性或准确性。 该项目旨在改善分布式数据管理的问题,同时实现可扩展和准确的分析。 该项目提供了一种全面的方法来按大规模处理数据对知识提取,表示和学习。这项研究的产品包括:(1)语义投影的算法套件和可扩展的学习方法,用于有效的数据维度降低,模式识别,异常检测和聚类,以及(2)与分布式数据采集过程的开源中间件,以及与SITU分析和人群中的分布式数据采集过程。这些产品将通过https://github.com/distributedReasoningatunm的GitHub存储库提供。 此外,人群采购的扩展是一个教育平台,旨在吸引对STEM领域的兴趣。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Trilce Estrada其他文献

Performance Dissection of a Molecular Dynamics Code across CUDA and GPU Generations
跨 CUDA 和 GPU 各代分子动力学代码的性能剖析
compPknots: A Framework for Parallel Prediction and Comparison of RNA Secondary Structures with Pseudoknots
compPknots:RNA二级结构与伪结的并行预测和比较框架
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Trilce Estrada;Abel Licon;M. Taufer
  • 通讯作者:
    M. Taufer
Modeling Job Lifespan Delays in Volunteer Computing Projects
对志愿计算项目中的工作寿命延迟进行建模
Table Interpretation and Extraction of Semantic Relationships to Synthesize Digital Documents
表格解释和语义关系提取以合成数字文档
  • DOI:
    10.5220/0006436902230232
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Perez;Trilce Estrada;Soraya Abad
  • 通讯作者:
    Soraya Abad
Identification of Stellar Population in Galactic Spectra Using the Hierarchical Desicion Ensemble
使用分层决策系综识别银河系光谱中的恒星群
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Trilce Estrada;O. Fuentes
  • 通讯作者:
    O. Fuentes

Trilce Estrada的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Trilce Estrada', 18)}}的其他基金

Collaborative Research: PPoSS: Planning: Performance Scalability, Trust, and Reproducibility: A Community Roadmap to Robust Science in High-throughput Applications
协作研究:PPoSS:规划:性能可扩展性、信任和可重复性:高通量应用中稳健科学的社区路线图
  • 批准号:
    2028956
  • 财政年份:
    2020
  • 资助金额:
    $ 41.3万
  • 项目类别:
    Standard Grant
Collaborative Research: Mentoring the Next Generation of Parallel Processing Researchers at IPDPS and other IEEE-CSTCPP Sponsored Conferences
协作研究:在 IPDPS 和其他 IEEE-CSTCPP 赞助的会议上指导下一代并行处理研究人员
  • 批准号:
    1832190
  • 财政年份:
    2018
  • 资助金额:
    $ 41.3万
  • 项目类别:
    Standard Grant
Fostering and Diversifying Student Participation in the International Parallel and Distributed Processing Symposium
促进学生参与国际并行和分布式处理研讨会并使其多样化
  • 批准号:
    1649118
  • 财政年份:
    2016
  • 资助金额:
    $ 41.3万
  • 项目类别:
    Standard Grant
Collaborative Research: Student Outreach Support Activities at IEEE-CS TCPP Sponsoed Conferences
合作研究:IEEE-CS TCPP 赞助会议上的学生外展支持活动
  • 批准号:
    1550807
  • 财政年份:
    2015
  • 资助金额:
    $ 41.3万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Enabling grid-aware aggregation and real-time control of distributed energy resources in electric power distribution systems
职业:实现配电系统中分布式能源的网格感知聚合和实时控制
  • 批准号:
    2047306
  • 财政年份:
    2021
  • 资助金额:
    $ 41.3万
  • 项目类别:
    Continuing Grant
CAREER: Stochastic capacity scheduling and control of distributed energy storage enabling stacked services
职业:分布式储能的随机容量调度和控制,支持堆叠服务
  • 批准号:
    1845093
  • 财政年份:
    2019
  • 资助金额:
    $ 41.3万
  • 项目类别:
    Continuing Grant
CAREER: Systematic Multi-scale Integration of Physics-based and Data-driven Models of Distributed Resources for Enabling Ubiquitous Energy Storage Services in Power Systems
职业:基于物理和数据驱动的分布式资源模型的系统性多尺度集成,以实现电力系统中无处不在的储能服务
  • 批准号:
    1150944
  • 财政年份:
    2012
  • 资助金额:
    $ 41.3万
  • 项目类别:
    Standard Grant
CAREER: Data-aware Distributed Computing for Enabling Large-scale Collaborative Science
职业:数据感知分布式计算支持大规模协作科学
  • 批准号:
    1131889
  • 财政年份:
    2011
  • 资助金额:
    $ 41.3万
  • 项目类别:
    Continuing Grant
CAREER: Data-aware Distributed Computing for Enabling Large-scale Collaborative Science
职业:数据感知分布式计算支持大规模协作科学
  • 批准号:
    0846052
  • 财政年份:
    2009
  • 资助金额:
    $ 41.3万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了