EARS: Future Wireless Broadband Access: Cross-Optimizing Hardware, Physical and Network Layers
EARS:未来无线宽带接入:交叉优化硬件、物理层和网络层
基本信息
- 批准号:1444060
- 负责人:
- 金额:$ 68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-11-01 至 2019-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The availability of affordable and ubiquitous broadband connectivity is a necessary condition for prosperity since broadband wireless access impacts virtually all sectors of society and economy including education, healthcare, transportation, and security. In a vast and mixed urban/rural country such as the United States, providing high-speed broadband data access through the wired infrastructure can be costly. On the other hand, wireless can cover large areas and reach a large number of people very effectively. In addition, wireless is the preferred medium through which we connect to the Internet and enjoy a whole wealth of services such as entertainment, education, healthcare, e-commerce, social networking, and remote working. In this context, the ability to handle the predicted dramatic increase of demand for wireless data has become crucial not only for the wireless industry but, more in general, for the growth of our economy. While wireless connectivity has significantly improved over the past few decades, it is quite behind the theoretical and technological achievable limits and it cannot address future demand. With this in mind, this project develops an innovative multi-tier hierarchical infrastructure for next-generation cellular networks with densely deployed base stations, along with a set of well-integrated cross-layer design techniques for interference management and system optimization. This proposed approach may considerably improve the rate performance and user capacity, and is promising in bridging the gap between theory and practice for broadband wireless access. To support the drastically increased mobile data traffic in wireless broadband services, this work focuses on a systematic cross-layer system optimization approach that relies on three major pillars: 1) at the physical layer, base stations with massive multiple-input multiple-output antenna systems are used; 2) at the wireless network architecture level, a multi-tier heterogeneous network approach is selected, achieving unprecedented spatial spectrum reuse; 3) at the cross-layer optimization level, a holistic network utility maximization approach is proposed, that systematically obtains layered protocol architectures from the structure of the global optimization solution. In relation to the above pillars, the fundamental challenges that will be addressed in this project are: 1) the design of integrated and power-efficient reconfigurable massive multiple-input multiple-output front-end antenna systems based on the concept of hybrid beamforming, i.e., on the optimal splitting of multiuser precoding and inter-cell interference management functions between digital baseband processing and analog radio frequency beamforming; 2) the design of hybrid beamforming schemes that exploit long-term channel statistics for inter-cell coordinated interference management, and instantaneous channel state information to achieve spatial multiplexing gain in each cell; 3) a user partitioning and scheduling approach based on clustering the user space according to quality of experience requirements, channel statistics and mobility, assigning network utility functions to the different user groups, solving the combined network utility maximization problem and systematically deriving a layered protocol architecture from the structural properties of the optimization solution. In addition, the work will significantly extend current mathematical performance analysis of wireless networks, based on advanced tools from stochastic geometry and random matrix theory, in order to assess quantitatively the performance gains over current technology of the proposed approach. Last, small-scale experiments will be conducted with software-defined radios equipped with the front end that will be developed.
负担得起和无处不在的宽带连接的可用性是繁荣的必要条件,因为宽带无线访问几乎影响了社会和经济的所有部门,包括教育,医疗保健,运输和安全。在一个庞大而混杂的城市/农村国家(如美国)中,通过有线基础设施提供高速宽带数据访问可能是昂贵的。另一方面,无线可以覆盖大面积,并非常有效地接触大量人。此外,无线是我们连接到互联网的首选媒介,并享受娱乐,教育,医疗保健,电子商务,社交网络和远程工作等大量服务。在这种情况下,处理无线数据需求急剧增加的能力不仅对无线行业至关重要,而且对我们的经济增长而言,更重要的是。尽管在过去的几十年中,无线连通性已大大提高,但它落后于理论和技术可实现的限制,并且无法满足未来的需求。考虑到这一点,该项目为下一代蜂窝网络开发了一种创新的多层层次基础架构,具有密集部署的基站,以及一系列良好整合的跨层设计技术,用于干预和系统优化。这种提出的方法可能会大大提高利率性能和用户的能力,并有望弥合理论和实践之间的差距,以供宽带无线访问。为了支持无线宽带服务中的移动数据流量急剧增加,这项工作着重于系统的跨层系统优化方法,该方法依赖三个主要支柱:1)在物理层,使用大量多输入多输入天线系统的基站; 2)在无线网络体系结构级别上,选择了多层异质网络方法,从而实现了前所未有的空间频谱重复使用; 3)在跨层优化级别上,提出了整体网络实用程序最大化方法,该方法从全局优化解决方案的结构中系统地获得了分层协议体系结构。与上述支柱有关,该项目将要解决的基本挑战是:1)基于混合光束成形的概念,即基于混合光束的概念,即,在多端的预播频率和数字上的频率频率频率频率和数字上的频率频率和数字上的频率; 2)杂交边界成形方案的设计,这些方案利用长期通道统计数据用于核心间的干扰管理和瞬时通道状态信息,以实现每个单元中的空间多路复用增益; 3)基于经验要求,渠道统计和移动性质量将用户空间聚类的用户分配和调度方法,将网络实用程序函数分配给不同的用户组,解决联合网络实用程序最大化问题并系统地从优化解决方案的结构属性中衍生出分层协议体系结构。此外,基于随机几何学和随机矩阵理论的高级工具,这项工作将显着扩展无线网络的当前数学性能分析,以定量评估所提出方法的当前技术的性能提高。最后的小规模实验将使用配备有前端的软件定义的无线电进行。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Konstantinos Psounis其他文献
Operational information content sum capacity: From theory to practice
- DOI:
10.1016/j.comnet.2014.08.017 - 发表时间:
2014-12-24 - 期刊:
- 影响因子:
- 作者:
Ertugrul N. Ciftcioglu;Antonios Michaloliakos;Aylin Yener;Konstantinos Psounis;Thomas F. La Porta;Ramesh Govindan - 通讯作者:
Ramesh Govindan
Konstantinos Psounis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Konstantinos Psounis', 18)}}的其他基金
SaTC: Frontiers: Collaborative: Protecting Personal Data Flow on the Internet
SaTC:前沿:协作:保护互联网上的个人数据流
- 批准号:
1956435 - 财政年份:2020
- 资助金额:
$ 68万 - 项目类别:
Continuing Grant
CNS Core: Medium: Collaborative Research: Privacy-Preserving Mobile Crowdsourced Data
CNS 核心:媒介:协作研究:保护隐私的移动众包数据
- 批准号:
1901488 - 财政年份:2019
- 资助金额:
$ 68万 - 项目类别:
Continuing Grant
NeTS: Small: Spectrum Sharing Systems for Wireless Networks: Performance and privacy challenges
NeTS:小型:无线网络频谱共享系统:性能和隐私挑战
- 批准号:
1618450 - 财政年份:2016
- 资助金额:
$ 68万 - 项目类别:
Standard Grant
NEDG: Contention-Awareness in Mesh Transport: Theory and Practice
NEDG:网状传输中的竞争意识:理论与实践
- 批准号:
0832161 - 财政年份:2008
- 资助金额:
$ 68万 - 项目类别:
Standard Grant
NeTS-NBD: Efficient Routing in Delay Tolerant Networks
NeTS-NBD:延迟容忍网络中的高效路由
- 批准号:
0520017 - 财政年份:2005
- 资助金额:
$ 68万 - 项目类别:
Standard Grant
相似国自然基金
面向超量密集信息传输的未来无线网络资源管理研究
- 批准号:61901115
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
未来无线通信中的N连续多载波传输技术研究
- 批准号:61901298
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
序号调制技术在未来无线网络中的应用研究
- 批准号:61871190
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
未来移动通信系统全局无线资源分配的分布式计算
- 批准号:61871128
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
未来无线通信中支持峰均比可变信号的频段和效率可调的功率放大器研究
- 批准号:61701199
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
6G Terahertz Communications for Future Heterogeneous Wireless Network
面向未来异构无线网络的 6G 太赫兹通信
- 批准号:
EP/Y035135/1 - 财政年份:2024
- 资助金额:
$ 68万 - 项目类别:
Research Grant
ECCS-EPSRC - Advanced III-N Devices and Circuit Architectures for mm-Wave Future-Generation Wireless Communications
ECCS-EPSRC - 用于毫米波下一代无线通信的先进 III-N 器件和电路架构
- 批准号:
EP/X012123/1 - 财政年份:2023
- 资助金额:
$ 68万 - 项目类别:
Research Grant
Wearable, Wireless Deep-tissue Sensing Patch for Continuous Monitoring of Recovery from Microsurgical Tissue Transfer
可穿戴式无线深层组织传感贴片,用于连续监测显微外科组织转移的恢复情况
- 批准号:
10637093 - 财政年份:2023
- 资助金额:
$ 68万 - 项目类别:
Home foot-temperature monitoring through smart mat technology to improve access, equity, and outcomes in high-risk patients with diabetes
通过智能垫技术进行家庭足部温度监测,以改善高危糖尿病患者的可及性、公平性和结果
- 批准号:
10539209 - 财政年份:2023
- 资助金额:
$ 68万 - 项目类别:
Soft wireless multimodal cardiac implantable devices for long-term investigating heart failure pathogenesis
用于长期研究心力衰竭发病机制的软无线多模式心脏植入装置
- 批准号:
10735395 - 财政年份:2023
- 资助金额:
$ 68万 - 项目类别: