Kinetics and Entanglement in Quantum Devices

量子器件中的动力学和纠缠

基本信息

  • 批准号:
    1608238
  • 负责人:
  • 金额:
    $ 36.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

NONTECHNICAL SUMMARYThis award supports research and education on time-dependent phenomena in nanodevices, such as the transfer of heat and charge. Recent progress in information technology has greatly exceeded even the wildest dreams of science fiction writers of the sixties and the seventies. The cornerstone of this still unfolding revolution has been the exhaustive theoretical understanding of semiconductor materials. Based entirely on quantum mechanics, it has enabled technology to manufacture and pack billions of transistors per square centimeter. The next big frontier in this quest is building a quantum computer, which will enable calculation capacity infeasible in current classical devices. As before, the crucial step is in imagining, predicting, and eventually finding materials with the proper "quantum pedigree" that will be up to the task. Most experts agree that we already have a perfect candidate for the job, the so-called topological insulators. These novel compounds have unique electronic properties that make them ideal for the processing and storage of quantum information. The proposed activity will advance the theoretical understanding of these materials and expand on the ways they can be employed in quantum computation.The award will also support graduate students and a postdoctoral researcher, which will be trained in modern theoretical and computational techniques, and will have opportunities to visit and interact with experimentalists. The results of the research will be published in scientific journals, and will be presented in national and international conferences. The PI will co-organize a two-week summer school at the University of Minnesota, and a public lecture series in theoretical physics that is attended by more than 500 members of the Twin-Cities community.TECHNICAL SUMMARYThis award supports research and education on nonequilibrium dynamics and entanglement propagation in quantum devices. Topological properties of electronic spectra, which play increasingly prominent role in these structures, lead to transitions between various topologically distinct phases. Disorder, inevitably present in any realistic device, qualitatively changes electron dynamics in the vicinity of such quantum phase transitions (QPT). The activity will focus on: (i) investigating heat and charge transfer in the vicinity of a topological QPT and developing concrete experimental setups that will be capable to probe such near-critical dynamics, (ii) investigating finite-size and dynamical scaling for various measures of quantum entanglement across a QPT, (iii) investigating hidden topological characteristics of quasicrystals, (iv) aiding and advancing experimental efforts in the search for neutral edge modes of fractional quantum Hall structures and in the characterization of superconducting nanowires, (v) advancing a theory of dissipative quantum tunneling in molecular magnets.The award will also support graduate students and a postdoctoral researcher, which will be trained in modern theoretical and computational techniques, and will have opportunities to visit and interact with experimentalists. The results of the research will be published in scientific journals, and will be presented in national and international conferences. The PI will co-organize a two-week summer school at the University of Minnesota, and a public lecture series in theoretical physics that is attended by more than 500 members of the Twin-Cities community.
非技术摘要该奖项支持纳米器件中与时间相关的现象(例如热和电荷的传递)的研究和教育。信息技术的最新进展甚至远远超出了六七十年代科幻作家最疯狂的梦想。这场仍在展开的革命的基石是对半导体材料的详尽理论理解。它完全基于量子力学,使技术能够在每平方厘米上制造和封装数十亿个晶体管。这一探索的下一个重大前沿是建造一台量子计算机,这将实现当前经典设备无法实现的计算能力。和以前一样,关键的一步是想象、预测并最终找到能够胜任这项任务的具有适当“量子谱系”的材料。大多数专家都认为,我们已经有了一个完美的候选者,即所谓的拓扑绝缘体。这些新型化合物具有独特的电子特性,使其成为量子信息处理和存储的理想选择。拟议的活动将增进对这些材料的理论理解,并扩展它们在量子计算中的应用方式。该奖项还将支持研究生和博士后研究员,他们将接受现代理论和计算技术的培训,并将拥有有机会参观实验人员并与实验人员互动。研究结果将发表在科学期刊上,并将在国内和国际会议上发表。 PI 将在明尼苏达大学共同组织为期两周的暑期学校,以及由双城社区 500 多名成员参加的理论物理学公开讲座系列。 技术摘要该奖项支持非平衡态的研究和教育量子器件中的动力学和纠缠传播。电子光谱的拓扑特性在这些结构中发挥着越来越重要的作用,导致各种拓扑不同相之间的转变。无序在任何现实设备中都不可避免地存在,它会定性地改变这种量子相变(QPT)附近的电子动力学。 该活动将重点关注:(i) 研究拓扑 QPT 附近的热和电荷传递,并开发能够探测此类近临界动力学的具体实验装置,(ii) 研究各种情况的有限尺寸和动态缩放跨 QPT 的量子纠缠测量,(iii) 研究准晶体隐藏的拓扑特性,(iv) 帮助和推进寻找分数量子霍尔结构的中性边缘模式和超导表征的实验工作纳米线,(v)推进分子磁体耗散量子隧道理论。该奖项还将支持研究生和博士后研究员,他们将接受现代理论和计算技术的培训,并将有机会参观实验人员并与实验人员互动。研究结果将发表在科学期刊上,并将在国内和国际会议上发表。 PI 将在明尼苏达大学共同组织为期两周的暑期学校,以及由双城社区 500 多名成员参加的理论物理学公开讲座系列。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alex Kamenev其他文献

Typeset Using Revt E X 1
使用 Revt E X 1 排版
  • DOI:
    10.1103/physrevlett.89.027001
  • 发表时间:
    2001-12-09
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Alex Kamenev;Yuval Oreg
  • 通讯作者:
    Yuval Oreg
How pure can we go with adiabatic state manipulation?
我们的绝热状态操纵能达到多纯粹?
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Raul A. Santos;Alex Kamenev;Y. Gefen
  • 通讯作者:
    Y. Gefen
Quantum criticality and optical conductivity in a two-valley system
双谷系统中的量子临界性和光导率
  • DOI:
    10.1126/sciadv.aav3407
  • 发表时间:
    2024-06-15
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Yasha Gindikin;Songci Li;Alex Levchenko;Alex Kamenev;A. Chubukov;Dmitrii L. Maslov
  • 通讯作者:
    Dmitrii L. Maslov
Coulomb blockade with neutral modes.
具有中性模式的库仑封锁
  • DOI:
    10.1103/physrevlett.114.156401
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Alex Kamenev;Yuval Gefen
  • 通讯作者:
    Yuval Gefen
Dynamics of nano-magnetic oscillators
纳米磁振荡器的动力学
  • DOI:
    10.1093/acprof:oso/9780199691388.003.0006
  • 发表时间:
    2011-10-17
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Dunn;A. Chudnovskiy;Alex Kamenev
  • 通讯作者:
    Alex Kamenev

Alex Kamenev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alex Kamenev', 18)}}的其他基金

NSF-BSF: Many-Body Physics of Quantum Computation
NSF-BSF:量子计算的多体物理学
  • 批准号:
    2338819
  • 财政年份:
    2024
  • 资助金额:
    $ 36.3万
  • 项目类别:
    Continuing Grant
REU Site: Physics and Astronomy at the University of Minnesota
REU 站点:明尼苏达大学物理与天文学
  • 批准号:
    2348668
  • 财政年份:
    2024
  • 资助金额:
    $ 36.3万
  • 项目类别:
    Standard Grant
REU Site: Physics and Astronomy at the University of Minnesota
REU 站点:明尼苏达大学物理与天文学
  • 批准号:
    2049645
  • 财政年份:
    2021
  • 资助金额:
    $ 36.3万
  • 项目类别:
    Standard Grant
EAGER-QAC-QCH: NSF-BSF: Quantum Computation as a Non-Equilibrium Dynamical Many-Body System
EAGER-QAC-QCH:NSF-BSF:量子计算作为非平衡动态多体系统
  • 批准号:
    2037654
  • 财政年份:
    2020
  • 资助金额:
    $ 36.3万
  • 项目类别:
    Standard Grant
REU/RET Site: Physics and Astronomy at the University of Minnesota
REU/RET 站点:明尼苏达大学物理与天文学
  • 批准号:
    1757388
  • 财政年份:
    2018
  • 资助金额:
    $ 36.3万
  • 项目类别:
    Continuing Grant
REU/RET Site: Physics and Astronomy at the University of Minnesota: Renewal
REU/RET 网站:明尼苏达大学物理和天文学:续订
  • 批准号:
    1460141
  • 财政年份:
    2015
  • 资助金额:
    $ 36.3万
  • 项目类别:
    Standard Grant
KINETICS OF FLUCTUATIONS IN NANO-DEVICES
纳米器件波动动力学
  • 批准号:
    1306734
  • 财政年份:
    2013
  • 资助金额:
    $ 36.3万
  • 项目类别:
    Continuing Grant
REU/RET Site: Physics and Astronomy at the University of Minnesota
REU/RET 站点:明尼苏达大学物理与天文学
  • 批准号:
    1156388
  • 财政年份:
    2012
  • 资助金额:
    $ 36.3万
  • 项目类别:
    Continuing Grant
Nonequilibrium Superconductivity in Disordered, Granular and Hybrid Systems
无序、粒状和混合系统中的非平衡超导性
  • 批准号:
    0804266
  • 财政年份:
    2008
  • 资助金额:
    $ 36.3万
  • 项目类别:
    Continuing Grant
Non--Perturbative Interaction Effects in Disordered and Granular Metals
无序金属和颗粒金属中的非微扰相互作用效应
  • 批准号:
    0405212
  • 财政年份:
    2004
  • 资助金额:
    $ 36.3万
  • 项目类别:
    Continuing Grant

相似国自然基金

非平衡量子多体体系中的纠缠动力学研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    18 万元
  • 项目类别:
    专项基金项目
发展量子纠缠轨线方法研究多原子碰撞过程中的量子效应
  • 批准号:
    11904252
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
分形晶格上自旋系统量子纠缠动力学与量子热化
  • 批准号:
    11905095
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
量子开放体系动力学的纠缠轨线理论研究
  • 批准号:
    11804213
  • 批准年份:
    2018
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
与引力量子真空涨落耦合的开放量子系统的动力学演化
  • 批准号:
    11805063
  • 批准年份:
    2018
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Integrated sources of multiphoton entanglement for enabling quantum interconnects
职业:用于实现量子互连的多光子纠缠集成源
  • 批准号:
    2339469
  • 财政年份:
    2024
  • 资助金额:
    $ 36.3万
  • 项目类别:
    Continuing Grant
Memory-Enhanced Entanglement Distribution with Gallium ARsenide quantum Dots
砷化镓量子点的记忆增强纠缠分布
  • 批准号:
    EP/Z000556/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.3万
  • 项目类别:
    Research Grant
ExpandQISE: Track 1: Exceptional entanglement transition and supersensitive quantum sensing empowered by anti-Hermiticity and symmetries
ExpandQISE:轨道 1:反厄米性和对称性支持的出色纠缠跃迁和超灵敏量子传感
  • 批准号:
    2329027
  • 财政年份:
    2023
  • 资助金额:
    $ 36.3万
  • 项目类别:
    Standard Grant
Spin-momentum dependence of quantum entanglement and information loss problem
量子纠缠的自旋动量依赖性和信息丢失问题
  • 批准号:
    23K03251
  • 财政年份:
    2023
  • 资助金额:
    $ 36.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Precise test of the B-meson quantum entanglement based on a new method for event topology determination
基于事件拓扑确定新方法的B介子量子纠缠精确测试
  • 批准号:
    23K03429
  • 财政年份:
    2023
  • 资助金额:
    $ 36.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了