Fundamental Understanding of Ionic Insertion/Extraction Mechanism of Organic Electrodes
有机电极离子嵌入/脱嵌机理的基本理解
基本信息
- 批准号:1438198
- 负责人:
- 金额:$ 11.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-12-01 至 2018-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Title: Collaborative Research: Fundamental Understanding of Ionic Insertion/Extraction Mechanism on Organic ElectrodesCollaborative:Principal Investigator: Huixin He (Lead)Number: 1438493Institution: Rutgers University - NewarkPrincipal Investigator: Chunsheng WangNumber: 1438198Institution: University of Maryland, College ParkThere is a strong need to develop batteries for storage of electricity that are inexpensive and use sustainable materials. Rechargeable batteries based on organic materials such as crystalline salts of croconic acid are potentially inexpensive and can be fabricated from sustainable resources, but suffer from low power and eventual failure after many re-charging cycles. The goal of this project is to develop a fundamental understanding of ion movement during the charging cycle in these materials. This information can then be used to rationally design organic batteries with improved energy capacity and long cycle life. The approach will make use of advanced techniques for synthesis and performance characterization of organic nanowire batteries that will be complimented by powerful molecular models to predict ion movement. An interdisciplinary team from two universities will be involved in this research effort. The interdisciplinary nature of this research will provide students at both the graduate and undergraduate levels with training in the high-tech fields electrochemical energy systems, nanotechnology, and computational modeling. To broaden participation, activities include an outreach program to provide high school students with a summer research experience, and a workshop for science teachers on sustainable energy topics from school districts in low-income areas of New Jersey.Technical DescriptionOrganic materials for electrochemical energy storage are potentially inexpensive and can be fabricated from sustainable resources, but suffer from low energy density and cycling failure. The potential to overcome these limitations has not been realized, due in part to an incomplete knowledge of ion insertion/extraction processes within the organic materials. The overall goal of this project is to develop a fundamental understanding of the ion insertion and extraction mechanism by elucidating the relationships for the thermodynamics and kinetics of ion insertion/extraction processes for lithium, magnesium, and sodium ions. These relationships will be obtained through density functional theory (DFT) and molecular modeling, in situ electrochemical characterization measurements, and characterization of organic crystal structures. This will approach will be complimented by synthesis and mechanical strain evolution measurements of crystalline croconic acid disodium salt nanowires of controlled size and shape. The fundamental understanding gained from this research can potentially enable the rational design organic materials ordered at the nanoscale and microscale for sustainable organic batteries with high energy density and long cycle life. An interdisciplinary team from two universities will be involved in this research effort. The interdisciplinary nature of this research will provide students at both the graduate and undergraduate levels with training in electrochemical energy systems, nanotechnology, and computational modeling. To broaden participation, activities include an outreach program to provide high school students with a summer research experience, and a workshop for science teachers on sustainable energy topics from school districts in low-income areas of New Jersey.
Title: Collaborative Research: Fundamental Understanding of Ionic Insertion/Extraction Mechanism on Organic ElectrodesCollaborative:Principal Investigator: Huixin He (Lead)Number: 1438493Institution: Rutgers University - NewarkPrincipal Investigator: Chunsheng WangNumber: 1438198Institution: University of Maryland, College ParkThere is a strong need to develop batteries for storage of electricity that便宜并使用可持续材料。 基于有机材料(例如鳄鱼的结晶盐)的可充电电池可能是廉价的,可以从可持续资源中制造,但经过许多重新充电周期后,低功率和最终失败。 该项目的目的是在这些材料的充电周期中对离子运动产生基本理解。然后,这些信息可用于合理设计具有改善能量能力和延长循环寿命的有机电池。 该方法将利用先进的技术来合成和性能表征有机纳米线电池,这些电池将由强大的分子模型来补充以预测离子运动。 来自两所大学的跨学科团队将参与这项研究工作。 这项研究的跨学科性质将为研究生和本科水平的学生提供高科技领域电化学能源系统,纳米技术和计算建模的培训。 为了扩大参与,活动包括一项宣传计划,旨在为高中生提供夏季研究经验,以及新泽西州低收入地区学区的科学教师的讲习班。技术描述用于电化学能源存储的有机材料潜在的价格廉价,可以是可持续资源的,但可以具有低能量的失败,但遭受了低度的失败和嘲笑的失败。 克服这些局限性的潜力尚未实现,部分原因是对有机材料中离子插入/提取过程的知识不完整。该项目的总体目标是通过阐明锂,镁和钠离子的离子插入/提取过程的热力学和动力学的关系来发展对离子插入和提取机制的基本理解。 这些关系将通过密度功能理论(DFT)和分子建模,原位电化学特征测量以及有机晶体结构的表征获得。这种方法将通过对受控大小和形状的晶体croconicac disodium盐纳米线的合成和机械应变演化的测量来称赞。 从这项研究中获得的基本理解可以有可能使纳米级和微观的有机材料能够用于具有高能量密度和较长循环寿命的可持续有机电池。 来自两所大学的跨学科团队将参与这项研究工作。 这项研究的跨学科性质将为研究生和本科水平的学生提供电化学能源系统,纳米技术和计算建模的培训。 为了扩大参与,活动包括一项外展计划,旨在为高中生提供夏季研究经验,以及新泽西低收入地区学区可持续能源主题的科学教师讲习班。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chunsheng Wang其他文献
Feasibility Study of Biomass Gasification Integrated with Reheating Furnaces in Steelmaking Process
炼钢过程中生物质气化与加热炉一体化的可行性研究
- DOI:
10.12783/dteees/iceee2019/31824 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Yukun Hu;J. Chowdhury;G. Katsaros;C. K. Tan;N. Balta;L. Varga;S. Tassou;Chunsheng Wang - 通讯作者:
Chunsheng Wang
A hiPSC-derived lineage-specific vascular smooth muscle cell-on-a-chip identifies aortic heterogeneity across segments.
hiPSC 衍生的谱系特异性血管平滑肌芯片细胞可识别跨节段的主动脉异质性。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:6.1
- 作者:
Gang Liu;Jun Li;Yang Ming;Bitao Xiang;Yibing Chen;Nan Chen;Mieradilijiang Abudupataer;Shichao Zhu;X. Zhou;Xiaoning Sun;Yongxin Sun;H. Lai;Sisi Feng;Chunsheng Wang;Kai Zhu - 通讯作者:
Kai Zhu
Determination of operating load limits for rotary shouldered connections with three-dimensional finite element analysis
通过三维有限元分析确定旋转台肩连接的工作载荷极限
- DOI:
10.1016/j.petrol.2015.04.029 - 发表时间:
2015-09 - 期刊:
- 影响因子:0
- 作者:
Ning Li;Chunsheng Wang;Wenchang Wang;Mingjie Wang - 通讯作者:
Mingjie Wang
Environmental controls on the distribution of metals in porewater and their diffusion fluxes at the sediment-water interface of the western Pacific
西太平洋沉积物-水界面孔隙水中金属分布及其扩散通量的环境控制
- DOI:
10.1016/j.apgeochem.2022.105520 - 发表时间:
2022 - 期刊:
- 影响因子:3.4
- 作者:
Juan Yang;Hongchen Nie;Dong;Chunsheng Wang - 通讯作者:
Chunsheng Wang
Branch Development of Five-Year-Old Betula alnoides Plantations in Response to Planting Density
五年生西南桦人工林枝条发育对种植密度的响应
- DOI:
10.3390/f9010042 - 发表时间:
2018 - 期刊:
- 影响因子:2.9
- 作者:
Chunsheng Wang;Cheng Tang;S. Hein;Jun;Zhigang Zhao;J. Zeng - 通讯作者:
J. Zeng
Chunsheng Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chunsheng Wang', 18)}}的其他基金
Mechanism for Lithium Dendrite Formation in Solid State Electrolytes
固态电解质中锂枝晶的形成机制
- 批准号:
1805159 - 财政年份:2018
- 资助金额:
$ 11.7万 - 项目类别:
Standard Grant
All-solid-state Interface-free Li-ion Batteries
全固态无接口锂离子电池
- 批准号:
1235719 - 财政年份:2012
- 资助金额:
$ 11.7万 - 项目类别:
Standard Grant
Novel Electroanalytical Techniques for Study of Phase Transformation Electrodes
用于研究相变电极的新型电分析技术
- 批准号:
0933228 - 财政年份:2009
- 资助金额:
$ 11.7万 - 项目类别:
Standard Grant
SGER- Exploratory Research on an Oxide Ion and Proton Co-Ionic Conducting
SGER-氧离子和质子共离子传导的探索性研究
- 批准号:
0620105 - 财政年份:2006
- 资助金额:
$ 11.7万 - 项目类别:
Standard Grant
相似国自然基金
阴离子结合催化活性阳离子聚合的催化设计、机理理解和单体拓展研究
- 批准号:22371274
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
NH3掺杂LiBH4原位机理解析及作为高性能固态锂离子电解质的探究
- 批准号:51802154
- 批准年份:2018
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
高比能锂离子电池多因素耦合老化机理解析与衰退建模研究
- 批准号:51807108
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
纤维素梯度功能膜微结构可控构筑及在新型储能器件中应用基础研究与机理解析
- 批准号:31800496
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
复杂微观结构的AuAg双金属纳米颗粒的形成转化机理及其表面等离子共振性能研究
- 批准号:11404210
- 批准年份:2014
- 资助金额:30.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAS-Climate: Understanding the fundamental redox chemistry and transport of chloroaluminate anions in ionic liquid electrolytes to develop earth-abundant aluminum ion battery
CAS-Climate:了解离子液体电解质中氯铝酸盐阴离子的基本氧化还原化学和传输,以开发地球上丰富的铝离子电池
- 批准号:
2427215 - 财政年份:2024
- 资助金额:
$ 11.7万 - 项目类别:
Standard Grant
Collaborative Research: Understanding the Lubrication Mechanisms of Environmentally-Compatible Protic Ionic Liquids
合作研究:了解环境相容的质子离子液体的润滑机制
- 批准号:
2246864 - 财政年份:2023
- 资助金额:
$ 11.7万 - 项目类别:
Standard Grant
Collaborative Research: Rational Design of Ionene + Ionic Liquid Membranes Based on Understanding Gas Transport on Different Length Scales
合作研究:基于不同长度尺度气体传输的紫罗烯离子液体膜的合理设计
- 批准号:
2312000 - 财政年份:2023
- 资助金额:
$ 11.7万 - 项目类别:
Standard Grant
Collaborative Research: Understanding the Lubrication Mechanisms of Environmentally-Compatible Protic Ionic Liquids
合作研究:了解环境相容的质子离子液体的润滑机制
- 批准号:
2246863 - 财政年份:2023
- 资助金额:
$ 11.7万 - 项目类别:
Standard Grant
Development of innovative ionic liquid DDS based on understanding of in vivo dynamics of ionic liquids
基于对离子液体体内动力学的了解开发创新离子液体 DDS
- 批准号:
23H03746 - 财政年份:2023
- 资助金额:
$ 11.7万 - 项目类别:
Grant-in-Aid for Scientific Research (B)