Collaborative Research: SusChem: Enabling the Biorefinery: Isolation, Fractionation, and Transformation of Bio-based Feedstocks into Fuels and Chemical Products

合作研究:SusChem:实现生物精炼:生物基原料的分离、分馏和转化为燃料和化学产品

基本信息

  • 批准号:
    1437688
  • 负责人:
  • 金额:
    $ 10.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

1437965 (Zimmerman), 1437595 (Beckman), and 1437688 (Soh). Biomass has potential to meet many of society's energy and chemical needs, replacing the need for fossil fuels, while minimizing environmental impact. In this project, a biorefinery approach will be explored to achieve viable and sustainable utilization of biomass for fuels and valuable co-products. Analogous to petroleum refining for a wide spectrum of products, biorefining maximizes utilization of all fractions, reducing economic and environmental barriers. In addition to fuel, some of the components also represent a palette of higher-value, non-fuel products such as nutritional supplements and feedstocks for bioplastics. There are orders of magnitude differences in the value of products that can be produced depending chemical structure and intended end-use (i.e., fuel, fine chemicals, nutraceuticals). Advances in selective, efficient, and sustainable technologies for the extraction and conversion of lipids from crude biomass are essential to enhance a transition to a biobased economy. This project will develop separation and processing techniques that are robust, selective, and tolerant of varying biomass compositions, to gain economic and environmental benefits through a biorefinery approach. The overall aim of this work is to fundamentally understand the system variables for extraction, fractionation and transformation of minimally processed biomass to produce fuel and other value-added co-products using a carbon dioxide and methanol mixture for efficient processing and separation. The work will model the fundamental system properties based on experiments with representative compounds and in turn the model will be used to control processing of real world wet biomass samples. The specific aims of the project are: 1) Ascertain and model the phase behavior of systems consisting of methanol, CO2, trans-esterification reaction substrates (reagents, intermediates, and products/byproducts), with or without water, to better understand the necessary operating conditions for conversion and fractionation of fatty acid methyl esters; 2) Evaluate and optimize heterogeneously catalyzed trans-esterification in CO2-methanol for selective conversion of model lipids and recovery of specific methyl ester fractions; 3) Apply experimentally determined parameters and model outcomes to optimize conversion and fractionation of real world biomass feedstocks including pre-extracted oils, waste feedstocks, and wet algal biomass; 4) Perform process design, life cycle assessment, and techno-economic analyses for informing system design to integrate this technology into a biorefinery setting. As such the efforts of this collaborative research will provide information on system fundamentals as well as the broader economic and environmental impacts of the system if implemented effectively. The project intrinsically provides student-learning opportunities in terms of high level research as well as educational resources regarding sustainability. The design approach modeled in this project provides an example of life cycle thinking mitigating the potential for unintended consequences. Graduate student researchers will have the opportunity to translate experimental results into educational materials, to be delivered on campus, in the community, and also globally via online curricula. Undergraduate researchers will be recruited through campus programs that support students from groups that are historically underrepresented in science, technology, engineering, and mathematics (STEM). The project will be used in undergraduate process design courses, integrating sustainability and green design into the core chemical engineering curriculum. Further, a short-course will be developed between the collaborators in the topic of green engineering and sustainable design, using this project as an example platform with developed materials made publically accessible. In terms of K-12, the project will be used to expand on established relationships serving underrepresented populations. Efforts will range from "greener" school competitions for Grades 6-8, to a focused experience for early high school students associated with a 3-week program in residence on campus. A new course, "Energy and Sustainability" will be designed and implemented to reinforce scientific principles that students will have learned in their 9th grade physical science class and to prepare these students for their 10th grade biology and 11th grade chemistry classes while introducing concepts of green design.
1437965(Zimmerman),1437595(Bec​​kman)和1437688(SOH)。生物质有可能满足许多​​社会的能源和化学需求,取代对化石燃料的需求,同时最大程度地减少环境影响。在该项目中,将探索一种生物填充方法,以实现生物量的可行且可持续的利用,用于燃料和有价值的副产品。类似于石油精炼的各种产品,生物修饰可最大程度地利用所有分数,从而减少经济和环境障碍。除燃料外,某些组件还代表了高价值的非燃料产品(例如营养补充剂和生物塑料原料)的调色板。可以根据化学结构和预期的最终用途(即燃料,细化学物质,营养素)产生的产品价值的数量级差异。从原油生物量中提取和转化脂质的选择性,高效和可持续技术的进步对于增强向生物基础经济的过渡至关重要。该项目将开发出强大,选择性和耐受性生物质组成的分离和处理技术,以通过生物填充方法获得经济和环境益处。 这项工作的总体目的是从根本上了解最小加工生物质的提取,分级和转化的系统变量,以使用二氧化碳和甲醇混合物来生产燃料和其他增值副产品,以有效加工和分离。这项工作将基于具有代表性化合物的实验的基本系统属性进行建模,进而将模型用于控制现实世界湿生物量样品的处理。该项目的具体目的是:1)确定和模拟由甲醇,CO2,跨酯化反应反应底物(试剂,中间体和产物/副产物)组成的系统的相位行为,以更好地了解脂肪酸甲基酯的转化和分离的必要操作条件; 2)评估和优化二氧化碳甲醇中的异质催化的跨酯化,以选择性转化模型脂质并恢复特定的甲基酯级分; 3)应用实验确定的参数和模型结果,以优化现实世界生物量原料的转化和分馏,包括预提取油,废物原料和湿藻类生物量; 4)执行过程设计,生命周期评估和技术经济分析,以告知系统设计以将该技术集成到生物填充环境中。因此,这项协作研究的努力将提供有关系统基础知识以及如果有效实施系统的更广泛的经济和环境影响的信息。该项目本质地提供了有关高水平研究以及有关可持续性的教育资源的学生学习机会。在本项目中建立的设计方法提供了一个示例,以减轻意外后果的潜力来思考。研究生研究人员将有机会通过在线课程将实验结果转化为教育材料,并将在校园,社区以及全球范围内交付。本科研究人员将通过校园计划招募,这些校园计划为科学,技术,工程和数学(STEM)中人数不足的团体的学生提供支持。该项目将用于本科过程设计课程,将可持续性和绿色设计集成到核心化学工程课程中。此外,将合作者在绿色工程和可持续设计的主题中将建立短途,使用该项目作为一个示例平台,并以公开访问的开发材料进行了示例平台。就K-12而言,该项目将用于扩展服务不足人群的既定关系。从6 - 8年级的“绿色”学校比赛到与校园住所为期3周的课程相关的早期高中学生的专注经验。将设计和实施一门新课程“能源和可持续性”,以加强学生在9年级的物理科学课上学到的科学原则,并为这些学生提供10年级生物学和11年级化学课程的准备,同时介绍绿色设计的概念。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lindsay Soh其他文献

Evaluating microalgal integrated biorefinery schemes: empirical controlled growth studies and life cycle assessment.
评估微藻综合生物精炼方案:经验控制生长研究和生命周期评估。
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    11.4
  • 作者:
    Lindsay Soh;M. Montazeri;B. Haznedaroglu;C. Kelly;Jordan Peccia;M. Eckelman;J. Zimmerman
  • 通讯作者:
    J. Zimmerman
Carbon Dioxide Solvent Applications in a Biorefinery
  • DOI:
    10.1021/bk-2014-1186.ch002
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lindsay Soh
  • 通讯作者:
    Lindsay Soh
Assessing the Temperature-Dependent Tunable Polarity of N,N-Dimethylcyclohexylamine (DMCHA) and Water Mixtures
评估 N,N-二甲基环己胺 (DMCHA) 和水混合物的温度依赖性可调极性
  • DOI:
    10.1021/acssuschemeng.2c00293
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ryan T. Berry;Elizabeth Dach;Jessica A. Melhorn;Ngai Yin Yip;Lindsay Soh
  • 通讯作者:
    Lindsay Soh
Cloud point and crystallization in fatty acid ethyl ester biodiesel mixtures with and without additives
  • DOI:
    10.1016/j.fuel.2018.02.100
  • 发表时间:
    2018-06-15
  • 期刊:
  • 影响因子:
  • 作者:
    Patrick A. Leggieri;Michael Senra;Lindsay Soh
  • 通讯作者:
    Lindsay Soh
CO 2 process intensification of algae oil extraction to biodiesel
CO 2 工艺强化从海藻油提取生物柴油
  • DOI:
    10.1002/aic.16992
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    G. Yadav;Leonard A. Fabiano;Lindsay Soh;J. Zimmerman;R. Sen;W. Seider
  • 通讯作者:
    W. Seider

Lindsay Soh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lindsay Soh', 18)}}的其他基金

RUI: Collaborative Research: Greener Processes for the Sustainable Development of Bio-Based Polyesters
RUI:合作研究:生物基聚酯可持续发展的绿色工艺
  • 批准号:
    1934368
  • 财政年份:
    2020
  • 资助金额:
    $ 10.07万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Liquid/Supercritical Fluid Chromatoghraphy Mass Spectrometer for Energy and Environmental Research
MRI:购买液体/超临界流体色谱质谱仪用于能源和环境研究
  • 批准号:
    1626100
  • 财政年份:
    2016
  • 资助金额:
    $ 10.07万
  • 项目类别:
    Standard Grant

相似国自然基金

钛基骨植入物表面电沉积镁氢涂层及其促成骨性能研究
  • 批准号:
    52371195
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
CLMP介导Connexin45-β-catenin复合体对先天性短肠综合征的致病机制研究
  • 批准号:
    82370525
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
人工局域表面等离激元高灵敏传感及其系统小型化的关键技术研究
  • 批准号:
    62371132
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
优先流对中俄原油管道沿线多年冻土水热稳定性的影响机制研究
  • 批准号:
    42301138
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
用于稳定锌负极的界面层/电解液双向调控研究
  • 批准号:
    52302289
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: SUSCHEM: Engineering Polymer-Nanocatalyst Membranes for Direct Capture of CO2 and Electrochemical Conversion to C2+ Liquid Fuel
合作研究:SUSCHEM:用于直接捕获 CO2 和电化学转化为 C2 液体燃料的工程聚合物纳米催化剂膜
  • 批准号:
    2324346
  • 财政年份:
    2023
  • 资助金额:
    $ 10.07万
  • 项目类别:
    Standard Grant
Collaborative Research: SUSCHEM: Engineering Polymer-Nanocatalyst Membranes for Direct Capture of CO2 and Electrochemical Conversion to C2+ Liquid Fuel
合作研究:SUSCHEM:用于直接捕获 CO2 和电化学转化为 C2 液体燃料的工程聚合物纳米催化剂膜
  • 批准号:
    2324345
  • 财政年份:
    2023
  • 资助金额:
    $ 10.07万
  • 项目类别:
    Standard Grant
SusChEM: Collaborative Research: Identification of the critical length scales and chemistries responsible for the anti-fouling properties of heterogeneous surfaces
SusChEM:合作研究:确定负责异质表面防污性能的临界长度尺度和化学成分
  • 批准号:
    2023847
  • 财政年份:
    2019
  • 资助金额:
    $ 10.07万
  • 项目类别:
    Standard Grant
SusChem Collaborative Research: Process Optimization of Novel Routes for the Production of bio-based Para-Xylene
SusChem 合作研究:生物基对二甲苯生产新路线的工艺优化
  • 批准号:
    2005905
  • 财政年份:
    2019
  • 资助金额:
    $ 10.07万
  • 项目类别:
    Continuing Grant
SusChEM: Collaborative Research: Efficient biological activation and conversion of short-chain hydrocarbons
SusChEM:合作研究:短链碳氢化合物的高效生物活化和转化
  • 批准号:
    1938893
  • 财政年份:
    2018
  • 资助金额:
    $ 10.07万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了