AF: Small: Randomized Algorithms and Stochastic Models

AF:小:随机算法和随机模型

基本信息

  • 批准号:
    1422569
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-06-01 至 2019-05-31
  • 项目状态:
    已结题

项目摘要

The fundamental role played by randomness in computation is one of the key discoveries of research in algorithms and complexity over the last four decades. This manifests itself in at least two ways: through randomized algorithms, and through stochastic models for uncertain data and/or processes. This fundamental role has been accentuated in our Big Data age through tools such as sampling which are vital for streaming and sub-linear algorithms, as well as through the stochasticity that is often inherent in machine learning. In this project, the PI aims to develop or improve some basic techniques in randomized algorithms and stochastic optimization, as well as to apply them to classical and modern problems in combinatorial optimization.The broader impact of this project will be in several directions including the following. Graduate students will be involved closely in this research, and undergraduate research teams will be exposed to related ideas in algorithms, probabilistic methods, and optimization. High-school students will be taught the foundations of this research, especially the Lovasz Local Lemma and its facets, both through individual mentoring and through group-based teaching. Appropriate aspects of this work will be integrated into the PI's classes. Finally, this work will extend to key applications in areas including vaccination problems and the operation of alternative-energy plants.This project aims to develop tools that will be general and useful in their own right, as well as techniques that will lead to improvements for targeted, fundamental applications. These applications include well-known problems in combinatorial optimization including asymmetric traveling salesperson, k-median, and stochastic matching, as well as basic issues in application areas such as public health and social networks (vaccination) and alternative energy (operations planning for wind and solar energy plants under stochastic uncertainty). The proposed techniques encompass "going beyond" the powerful Lovasz Local Lemma, new iterated applications of Local Lemma-like techniques and their generalizations to problems such as asymmetric traveling salesperson, the nexus of dependent rounding, submodularity, and (matrix) concentration bounds, as well as new types of differential-equation techniques in discrete optimization. As a particular example, work of the PI and his collaborators has shown that the Moser-Tardos algorithm has facets that can help us get well beyond what is guaranteed by the Lovasz Local Lemma; this project aims to go significantly further in this broad direction, with the goal that generalizations of a powerful tool such as the Local Lemma will have new applications in discrete optimization.
随机性在计算中发挥的基本作用是过去四十年算法和复杂性研究的关键发现之一。这至少以两种方式体现出来:通过随机算法,以及通过不确定数据和/或过程的随机模型。在我们的大数据时代,通过对流和次线性算法至关重要的采样等工具以及机器学习中通常固有的随机性,这一基本作用得到了强调。在该项目中,PI 旨在开发或改进随机算法和随机优化中的一些基本技术,并将其应用于组合优化中的经典和现代问题。该项目的更广泛影响将在几个方向,包括: 。研究生将密切参与这项研究,本科生研究团队将接触算法、概率方法和优化方面的相关思想。高中生将通过个人辅导和小组教学的方式学习这项研究的基础知识,特别是洛瓦斯局部引理及其各个方面。这项工作的适当方面将被整合到 PI 的课程中​​。最后,这项工作将扩展到疫苗接种问题和替代能源工厂运营等领域的关键应用。该项目旨在开发通用且本身有用的工具,以及能够改进有针对性的基础应用。这些应用包括组合优化中的众所周知的问题,包括不对称旅行推销员、k 中值和随机匹配,以及公共卫生和社交网络(疫苗接种)和替代能源(风能和电力的运营规划)等应用领域的基本问题。随机不确定性下的太阳能发电厂)。所提出的技术包括“超越”强大的 Lovasz 局部引理、类局部引理技术的新迭代应用及其对非对称旅行推销员、依赖舍入的关系、子模性和(矩阵)集中边界等问题的概括,如以及离散优化中的新型微分方程技术。作为一个特定的例子,PI 及其合作者的工作表明,Moser-Tardos 算法的某些方面可以帮助我们远远超出 Lovasz 局部引理所保证的范围;该项目旨在在这个广泛的方向上走得更远,目标是局部引理等强大工具的泛化将在离散优化中拥有新的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aravind Srinivasan其他文献

Matching Tasks and Workers under Known Arrival Distributions: Online Task Assignment with Two-sided Arrivals
已知到达分布下的任务和工人匹配:双边到达的在线任务分配
  • DOI:
    10.1145/3652021
  • 发表时间:
    2024-03-11
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    John P. Dickerson;Karthik Abinav Sankararaman;Aravind Srinivasan;Pan Xu;Yifan Xu
  • 通讯作者:
    Yifan Xu
A constructive algorithm for the LLL on permutations
排列上 LLL 的构造性算法
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David G. Harris;Aravind Srinivasan
  • 通讯作者:
    Aravind Srinivasan
A monolithically-integrated optical transmitter and receiver in a zero-change 45nm SOI process
采用零变化 45nm SOI 工艺的单片集成光发射器和接收器
  • DOI:
    10.1109/vlsic.2014.6858378
  • 发表时间:
    2014-06-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Georgas;B. Moss;Chen Sun;J. Shainline;J. Orcutt;M. Wade;Yu;Kareem Nammari;J. Leu;Aravind Srinivasan;Rajeev J Ram;M. Popović;V. Stojanović
  • 通讯作者:
    V. Stojanović
Concentration of Submodular Functions Under Negative Dependence
负依赖下子模函数的集中
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sharmila Duppala;George Z. Li;Juan Luque;Aravind Srinivasan;Renata Valieva
  • 通讯作者:
    Renata Valieva
Approximating Hyper-Rectangles: Learning and Pseudorandom Sets
逼近超矩形:学习和伪随机集
  • DOI:
    10.1006/jcss.1998.1593
  • 发表时间:
    1998-12-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peter Auer;Philip M. Long;Aravind Srinivasan
  • 通讯作者:
    Aravind Srinivasan

Aravind Srinivasan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aravind Srinivasan', 18)}}的其他基金

Collaborative Research: SaTC: CORE: Medium: Graph Mining and Network Science with Differential Privacy: Efficient Algorithms and Fundamental Limits
协作研究:SaTC:核心:媒介:具有差异隐私的图挖掘和网络科学:高效算法和基本限制
  • 批准号:
    2317194
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Expeditions: Collaborative Research: Global Pervasive Computational Epidemiology
探险:合作研究:全球普适计算流行病学
  • 批准号:
    1918749
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
EAGER: Probabilistic Models and Algorithms
EAGER:概率模型和算法
  • 批准号:
    1749864
  • 财政年份:
    2017
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
FOCS Conference Student and Postdoc Travel Support
FOCS 会议学生和博士后旅行支持
  • 批准号:
    1746451
  • 财政年份:
    2017
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
FOCS Conference Student Travel Support
FOCS 会议学生旅行支持
  • 批准号:
    1647461
  • 财政年份:
    2016
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
NetSE: Large: Collaborative Research: Contagion in Large Socio-Communication Networks
NetSE:大型:协作研究:大型社会通信网络中的传染
  • 批准号:
    1010789
  • 财政年份:
    2010
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS-NBD: An Integrated Approach to Computing Capacity and Developing Efficient Cross-Layer Protocols for Wireless Networks
合作研究:NeTS-NBD:计算能力和开发高效无线网络跨层协议的综合方法
  • 批准号:
    0626636
  • 财政年份:
    2006
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Probabilistic Approaches in Combinatorial Optimization
组合优化中的概率方法
  • 批准号:
    0208005
  • 财政年份:
    2002
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant

相似国自然基金

小分子代谢物Catechin与TRPV1相互作用激活外周感觉神经元介导尿毒症瘙痒的机制研究
  • 批准号:
    82371229
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
DHEA抑制小胶质细胞Fis1乳酸化修饰减轻POCD的机制
  • 批准号:
    82301369
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SETDB1调控小胶质细胞功能及参与阿尔茨海默病发病机制的研究
  • 批准号:
    82371419
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
PTBP1驱动H4K12la/BRD4/HIF1α复合物-PKM2正反馈环路促进非小细胞肺癌糖代谢重编程的机制研究及治疗方案探索
  • 批准号:
    82303616
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Hawaii Minority Health and Cancer Disparities SPORE
夏威夷少数民族健康与癌症差异 SPORE
  • 批准号:
    10716152
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
Implementing and Scaling the STEADI Fall Prevention Algorithm Using a Conversational Relational Agent for Community-Dwelling Older Adults with and without Mild Cognitive Impairment (MCI).
使用对话关系代理为社区居住的患有或不患有轻度认知障碍 (MCI) 的老年人实施和扩展 STEADI 跌倒预防算法。
  • 批准号:
    10822816
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
A proprietary digital platform for precision patient identification and enrollment of clinical trials for rare kidney diseases
用于精确识别患者和注册罕见肾脏疾病临床试验的专有数字平台
  • 批准号:
    10822581
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
Novel Adipose Targeted Gene Therapy for Lipodystrophy
新型脂肪靶向基因疗法治疗脂肪营养不良
  • 批准号:
    10820263
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
Tele-FootX: Virtually Supervised Tele-Exercise Platform for Accelerating Plantar Wound Healing
Tele-FootX:用于加速足底伤口愈合的虚拟监督远程锻炼平台
  • 批准号:
    10701324
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了