AF: Small: Using Notions of Simulation to Explore the Power of Self-Assembling Systems

AF:小:使用模拟概念探索自组装系统的力量

基本信息

  • 批准号:
    1422152
  • 负责人:
  • 金额:
    $ 44.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-01 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

A wide variety of self-assembling systems exist in nature. These are systems in which complex structures are formed from individual molecules that combine with each other autonomously, obeying only local rules of behavior and without any external guidance or placement. This process is responsible for the formation of a huge diversity of inorganic structures (such as crystals like snowflakes), as well as numerous biological structures (including cellular membranes and viruses). Hoping to harness the power of self-assembly to create advanced materials, complex nanoscale structures, and perform molecular computing, researchers have begun developing artificial self-assembling systems. This work has consisted of laboratory implementations as well as mathematical and computational modeling.Theoretical computer science has provided numerous insights into the creation and understanding of theoretical models of self-assembly, and these models have provided valuable understanding which has productively guided laboratory experiments. In this project, the body of work in defining, developing, and comparing the relative powers of theoretical models of self-assembling systems will be extended by the PI. In particular, the relative powers of various models will be studied by comparing their abilities to simulate each other. Additionally, the abilities of systems within existing and new models to mimic biological processes such as evolution and immune system behavior will be investigated.This project is divided into two main components. The first consists of a series of studies of the abilities of various theoretical models to simulate each other when certain parameters are fixed, especially the so-called "temperature" parameter fixed at 1, making cooperative behaviors difficult or impossible. Whether or not certain models, again with fixed parameters, are intrinsically universal will also be explored. Additionally, while most current theoretical work comparing the relative powers of models is concerned with a strong notion of simulation which includes both the productions and dynamics of the simulating systems, relaxed notions which focus solely on the structures produced (i.e. the productions) of simulating systems will be investigated. While the previous method has produced great theoretical understanding, this new approach is geared toward a more practical understanding which can guide experimentalists desiring to build predefined structures.The second main component of this project involves work related to studying the abilities of various self-assembling systems to simulate complex and important biological activities such as protein folding, the formation of prion-like structures, self-replication, evolution, and immune system behaviors. For much of this, an existing model utilizing dynamically changing basic components, the Signal Tile Assembly Model, will be employed. Further, a new model based on square 2D components which can fold along their boundaries, allowing for the formation of 3D structures by "foldable" 2D building blocks, will be developed and studied, with special focus on their abilities to abstractly mimic protein-like behaviors.The work will consist of mathematical modeling as well as computational modeling in the form of simulation software. Results and software, will be made freely available with already existing software and content on www.self-assembly.net.
自然界中存在各种各样的自组装系统。 这些系统中的复杂结构是由各个分子自主地相互结合形成的,仅遵守局部行为规则,无需任何外部指导或放置。 这个过程导致了多种无机结构(例如雪花等晶体)以及众多生物结构(包括细胞膜和病毒)的形成。 为了利用自组装的力量来创造先进材料、复杂的纳米级结构并进行分子计算,研究人员已经开始开发人工自组装系统。 这项工作包括实验室实施以及数学和计算建模。理论计算机科学为自组装理论模型的创建和理解提供了许多见解,这些模型提供了宝贵的理解,有效地指导了实验室实验。 在这个项目中,PI 将扩展定义、开发和比较自组装系统理论模型的相对能力的工作主体。 特别是,将通过比较各种模型相互模拟的能力来研究它们的相对能力。 此外,还将研究现有模型和新模型中的系统模拟进化和免疫系统行为等生物过程的能力。该项目分为两个主要部分。 第一个包括一系列对各种理论模型在某些参数固定时相互模拟的能力的研究,特别是所谓的“温度”参数固定为1,使得合作行为变得困难或不可能。 还将探讨某些具有固定参数的模型本质上是否具有普遍性。 此外,虽然当前大多数比较模型相对能力的理论工作都涉及强烈的模拟概念,其中包括模拟系统的产生和动力学,但宽松的概念仅关注模拟系统产生的结构(即产生)将被调查。 虽然以前的方法已经产生了很好的理论理解,但这种新方法面向更实际的理解,可以指导希望构建预定义结构的实验者。该项目的第二个主要组成部分涉及与研究各种自组装系统的能力相关的工作模拟复杂而重要的生物活动,例如蛋白质折叠、朊病毒样结构的形成、自我复制、进化和免疫系统行为。 对于其中大部分内容,将采用利用动态变化的基本组件的现有模型,即信号块组装模型。 此外,将开发和研究一种基于方形 2D 组件的新模型,该模型可以沿其边界折叠,从而允许通过“可折叠”2D 构建块形成 3D 结构,特别关注它们抽象模拟类蛋白质的能力这项工作将包括数学建模以及模拟软件形式的计算建模。 结果和软件将与 www.self-assemble.net 上现有的软件和内容一起免费提供。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Patitz其他文献

Matthew Patitz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Patitz', 18)}}的其他基金

Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
  • 批准号:
    2329908
  • 财政年份:
    2024
  • 资助金额:
    $ 44.99万
  • 项目类别:
    Standard Grant
CAREER: Bridging the gap between theoretical and experimental self-assembly through computational modeling
职业:通过计算建模弥合理论和实验自组装之间的差距
  • 批准号:
    1553166
  • 财政年份:
    2016
  • 资助金额:
    $ 44.99万
  • 项目类别:
    Continuing Grant
Workshop on DNA Computing by Self-Assembly
DNA自组装计算研讨会
  • 批准号:
    1428340
  • 财政年份:
    2014
  • 资助金额:
    $ 44.99万
  • 项目类别:
    Standard Grant

相似国自然基金

小分子代谢物Catechin与TRPV1相互作用激活外周感觉神经元介导尿毒症瘙痒的机制研究
  • 批准号:
    82371229
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
DHEA抑制小胶质细胞Fis1乳酸化修饰减轻POCD的机制
  • 批准号:
    82301369
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SETDB1调控小胶质细胞功能及参与阿尔茨海默病发病机制的研究
  • 批准号:
    82371419
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
PTBP1驱动H4K12la/BRD4/HIF1α复合物-PKM2正反馈环路促进非小细胞肺癌糖代谢重编程的机制研究及治疗方案探索
  • 批准号:
    82303616
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: AF: Small: Shape Matching in a Messy World Using Frechet Distance
合作研究:AF:小:使用 Frechet 距离在混乱的世界中进行形状匹配
  • 批准号:
    2311180
  • 财政年份:
    2023
  • 资助金额:
    $ 44.99万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Shape Matching in a Messy World Using Frechet Distance
合作研究:AF:小:使用 Frechet 距离在混乱的世界中进行形状匹配
  • 批准号:
    2311179
  • 财政年份:
    2023
  • 资助金额:
    $ 44.99万
  • 项目类别:
    Standard Grant
AF: Small: Integrated Knowledge Discovery and Analysis Using Sum-of-Squares Proofs
AF:小:使用平方和证明进行综合知识发现和分析
  • 批准号:
    1718380
  • 财政年份:
    2017
  • 资助金额:
    $ 44.99万
  • 项目类别:
    Standard Grant
AF: Small: Using Ordinal Information to Approximate Cardinal Objectives in Social Choice, Matching, Group Formation, and Assignment Problems
AF:小:使用序数信息来近似社会选择、匹配、群体形成和分配问题中的基本目标
  • 批准号:
    1527497
  • 财政年份:
    2015
  • 资助金额:
    $ 44.99万
  • 项目类别:
    Standard Grant
AF: SHF: Small: Adaptive molecular computation using buffered strand displacement networks
AF:SHF:小:使用缓冲链位移网络的自适应分子计算
  • 批准号:
    1525553
  • 财政年份:
    2015
  • 资助金额:
    $ 44.99万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了