Collaborative Research: GOALI: Experimentally-Validated Computational Approach to Developing and Predicting Kinetics in Anisotropic Systems

合作研究:GOALI:经过实验验证的计算方法,用于开发和预测各向异性系统中的动力学

基本信息

  • 批准号:
    1411106
  • 负责人:
  • 金额:
    $ 19.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2018-02-28
  • 项目状态:
    已结题

项目摘要

Non-technical summary:Reducing the weight of vehicles can increase fuel efficiency, which counters the rising economic and social costs of energy extraction and use. Magnesium is attractive as a potential alternative to steel and aluminum because of its low density, and high stiffness/weight and strength/weight ratios. However, alloy development can be a slow and costly process. To expedite the design of new casting alloys, this research uses experimentally validated computational methods, with particular emphasis on enabling a kinetically-informed approach. In the spirit of the Materials Genome Initiative, this project brings together computation and theory (Univ. Illinois, Urbana-Champaign), experimentation (Univ. Florida), and industrial modeling (ThermoCalc, LLC) in a joint effort to develop the science and data to predict relationships between processing, material structure, and eventually properties. The science and engineering advances will be applicable to other alloys as new methods are developed to study solidification and predict how atoms move at the atomic scale. This project takes advantage of new advances in computing power, new theoretical developments, and new high-throughput experimental methods. The program will support two PhD students, and the faculty are involved both in undergraduate research and education of high-school science teachers.Technical summary:To combat emissions and increase the fuel economy in transportation vehicles, considerable effort has been made to understand and enhance the structure-property relationships in magnesium (Mg) alloys due to their low density. This collaborative project unites computation (Univ. Illinois, Urbana-Champaign) and experimentation (Univ. Florida) in an integrated fashion to significantly advance the knowledge of transport in cast Mg alloys. In the spirit of the Materials Genome Initiative, the PIs proceed in an integrated and self-consistent manner to understand and predict transport phenomena during solidification. The approach integrates computation and experiment throughout, providing validation and connecting fundamental mechanisms to mesoscale transport. In collaboration with ThermoCalc, LLC, they will create new kinetic databases to enable material development.The goal of this approach is to produce a new fundamental understanding of solute and vacancy transport in Mg in a framework to predict phase transformation phenomena for new Mg alloys. A unified understanding of multiscale behavior provides a science-driven approach to future alloy development in a materials-genome framework. The data from this program will be disseminated via public databases (NIST MatDL) and the development of databases for mesoscale phase-field and continuum-level simulations. By accounting for temperature, time and compositional effects, the predictions from this work allow for the complete merger of processing-structure and structure-property predictions.The project has four tasks that build upon each other to predict the mesoscale microstructure for cast Mg: 1) Determine mobilities in binary and higher order systems for HCP and liquid Mg. Density functional theory (DFT) will lead this approach by calculating activation energies and mobilities. 2) Determine solid-liquid surface energies and molar volumes in all relevant systems via experiments and molecular dynamics simulations in DFT. 3) Assemble molar volumes, surface energies and mobilities in repositories and mobility databases. DICTRA simulations are compared to diffusion multiples, and segregation behavior and homogenization temperatures validated with experimental data. 4) Predict solidified microstructures through the integration of mobilities, molar volumes and surface energies. Simulations include the prediction of nuclei number density, size, and composition as a function of temperature and cooling rate, and are validated with experimental grain size distributions obtained from similar processing routes.The expected outcomes are a new fundamental understanding of atomic transport in HCP metals, with mobility, volumetric and surface energy databases that will serve both as a repository and a foundation for increasing system complexity (additional phases, solutes, etc.). The data will be supplied in a logical, manageable, and accessible fashion for transition into commercial practice. This platform may allow predictions of nucleation behavior in other relevant phases in the future.
非技术摘要:减轻车辆重量可以提高燃油效率,从而抵消能源开采和使用不断上升的经济和社会成本。镁由于密度低、刚度/重量比和强度/重量比高而作为钢和铝的潜在替代品很有吸引力。然而,合金开发可能是一个缓慢且昂贵的过程。 为了加快新型铸造合金的设计,本研究使用经过实验验证的计算方法,特别强调实现动力学信息方法。本着材料基因组计划的精神,该项目将计算和理论(伊利诺伊大学厄巴纳-香槟分校)、实验(佛罗里达大学)和工业建模(ThermoCalc, LLC)结合在一起,共同努力发展科学和技术。用于预测加工、材料结构和最终性能之间关系的数据。随着研究凝固和预测原子在原子尺度上如何移动的新方法的开发,科学和工程的进步将适用于其他合金。该项目利用了计算能力的新进步、新的理论发展和新的高通量实验方法。该计划将支持两名博士生,教师们同时参与本科生研究和高中科学教师的教育。技术摘要:为了减少运输车辆的排放并提高燃油经济性,人们付出了相当大的努力来理解和加强镁(Mg)合金由于密度低而导致结构-性能关系。该合作项目以综合方式将计算(伊利诺伊大学厄巴纳-香槟分校)和实验(佛罗里达大学)结合起来,以显着推进铸造镁合金传输的知识。本着材料基因组计划的精神,PI 以综合且自洽的方式进行,以理解和预测凝固过程中的输运现象。该方法将计算和实验贯穿始终,提供验证并将基本机制与中尺度传输联系起来。他们将与 ThermoCalc, LLC 合作创建新的动力学数据库以实现材料开发。该方法的目标是在框架中对镁中的溶质和空位传输产生新的基本理解,以预测新型镁合金的相变现象。对多尺度行为的统一理解为材料基因组框架中的未来合金开发提供了科学驱动的方法。该计划的数据将通过公共数据库 (NIST MatDL) 以及中尺度相场和连续介质级模拟数据库的开发来传播。通过考虑温度、时间和成分影响,这项工作的预测可以将加工结构和结构性能预测完全合并。该项目有四项相互依赖的任务来预测铸造镁的介观微观结构:1 ) 确定 HCP 和液态镁在二元和高阶系统中的迁移率。密度泛函理论(DFT)将通过计算活化能和迁移率来引领这种方法。 2)通过DFT中的实验和分子动力学模拟确定所有相关系统中的固液表面能和摩尔体积。 3) 在存储库和迁移率数据库中汇集摩尔体积、表面能和迁移率。将 DICTRA 模拟与扩散倍数进行比较,并通过实验数据验证偏析行为和均质化温度。 4) 通过整合迁移率、摩尔体积和表面能来预测凝固微观结构。模拟包括预测核数密度、尺寸和成分随温度和冷却速率的变化,并通过从类似加工路线获得的实验晶粒尺寸分布进行验证。预期结果是对 HCP 金属中原子输运的新的基本了解,具有流动性、体积和表面能数据库,这些数据库将充当存储库和增加系统复杂性(附加相、溶质等)的基础。数据将以逻辑、可管理和可访问的方式提供,以便过渡到商业实践。该平台可以预测未来其他相关阶段的成核行为。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ab initio magnesium-solute transport database using exact diffusion theory
使用精确扩散理论的从头算镁溶质传输数据库
  • DOI:
    10.1016/j.actamat.2018.03.025
  • 发表时间:
    2018-05-15
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    R. Agarwal;D. Trinkle
  • 通讯作者:
    D. Trinkle
Light-element diffusion in Mg using first-principles calculations: Anisotropy and elastodiffusion
使用第一原理计算进行镁中的轻元素扩散:各向异性和弹性扩散
  • DOI:
    10.1103/physrevb.94.054106
  • 发表时间:
    2016-05-18
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    R. Agarwal;D. Trinkle
  • 通讯作者:
    D. Trinkle
Diffusivity and derivatives for interstitial solutes: activation energy, volume, and elastodiffusion tensors
间隙溶质的扩散率和导数:活化能、体积和弹性扩散张量
  • DOI:
    10.1080/14786435.2016.1212175
  • 发表时间:
    2016-08
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Trinkle; Dallas R.
  • 通讯作者:
    Dallas R.
Automatic numerical evaluation of vacancy-mediated transport for arbitrary crystals: Onsager coefficients in the dilute limit using a Green function approach
任意晶体空位介导输运的自动数值评估:使用格林函数方法在稀释极限下的 Onsager 系数
  • DOI:
    10.1080/14786435.2017.1340685
  • 发表时间:
    2017-06
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Trinkle; Dallas R.
  • 通讯作者:
    Dallas R.
Exact Model of Vacancy-Mediated Solute Transport in Magnesium
镁中空位介导的溶质输运的精确模型
  • DOI:
    10.1103/physrevlett.118.105901
  • 发表时间:
    2017-03
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Agarwal, Ravi;Trinkle, Dallas R.
  • 通讯作者:
    Trinkle, Dallas R.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dallas Trinkle其他文献

Dallas Trinkle的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dallas Trinkle', 18)}}的其他基金

Collaborative Research: Machine Learning methods for multi-disciplinary multi-scales problems
协作研究:多学科多尺度问题的机器学习方法
  • 批准号:
    1940287
  • 财政年份:
    2020
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Continuing Grant
Collaborative Research: C1: Learning the Universal Free Energy Function
合作研究:C1:学习通用自由能函数
  • 批准号:
    1940303
  • 财政年份:
    2020
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
NRT-HDR: Data and Informatics Graduate Intern-traineeship: Materials at the Atomic Scale (DIGI-MAT)
NRT-HDR:数据和信息学研究生实习:原子尺度的材料(DIGI-MAT)
  • 批准号:
    1922758
  • 财政年份:
    2019
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
BD Spokes: SPOKE: MIDWEST: Collaborative: Integrative Materials Design (IMaD): Leverage, Innovate, and Disseminate
BD 辐条:辐条:中西部:协作:集成材料设计 (IMaD):利用、创新和传播
  • 批准号:
    1636929
  • 财政年份:
    2017
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
DMREF/GOALI/Collaborative Research: Computational Design, Rapid Processing and Characterization of Multiple Classes of Materials to Accelerate Materials Innovation
DMREF/GOALI/协作研究:多类材料的计算设计、快速加工和表征,以加速材料创新
  • 批准号:
    1435545
  • 财政年份:
    2014
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
CAREER: First-Principles Modeling of Titanium-Oxygen-Solute Intreaction: Materials Design for Improved Energy Efficiency
职业:钛-氧-溶质相互作用的第一原理建模:提高能源效率的材料设计
  • 批准号:
    0846624
  • 财政年份:
    2009
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
GOALI: Modeling Solute Effects in Magnesium Alloys: First-principles to Predictive Finite-Element
目标:模拟镁合金中的溶质效应:预测有限元的第一原理
  • 批准号:
    0825961
  • 财政年份:
    2008
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant

相似国自然基金

面向图像目标检测的新型弱监督学习方法研究
  • 批准号:
    62371157
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于扩散模型的细粒度目标跟踪方法研究
  • 批准号:
    62302142
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多维度不确定性驱动的弱目标分割方法研究
  • 批准号:
    62376189
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
数据驱动的复杂昂贵高维多目标优化方法研究
  • 批准号:
    62303344
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
“双碳”目标下北方粮食主产区水-土地-粮食-碳耦合机理与优化调控研究
  • 批准号:
    42301327
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

GOALI/Collaborative Research: Instabilities and Local Strains in Engineered Cartilage Scaffold
GOALI/合作研究:工程软骨支架的不稳定性和局部应变
  • 批准号:
    2129825
  • 财政年份:
    2022
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Instabilities and Local Strains in Engineered Cartilage Scaffold
GOALI/合作研究:工程软骨支架的不稳定性和局部应变
  • 批准号:
    2129776
  • 财政年份:
    2022
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
DMREF: Collaborative Research: GOALI: Accelerating Discovery of High Entropy Silicates for Extreme Environments
DMREF:合作研究:GOALI:加速极端环境中高熵硅酸盐的发现
  • 批准号:
    2219788
  • 财政年份:
    2022
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
Collaborative Research: GOALI: Bio-inspired bistable energy harvesting for fish telemetry tags
合作研究:GOALI:用于鱼类遥测标签的仿生双稳态能量收集
  • 批准号:
    2245117
  • 财政年份:
    2022
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Understanding Multiscale Mechanics of Cyclic Bending under Tension to Improve Elongation-to-Fracture of Hexagonal Metals
GOALI/合作研究:了解张力下循环弯曲的多尺度力学,以提高六方金属的断裂伸长率
  • 批准号:
    2147126
  • 财政年份:
    2022
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了