Evolutionarily Stable Dispersal Strategies in Spatial Models
空间模型中的进化稳定扩散策略
基本信息
- 批准号:1411476
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Unraveling the mechanism with which natural selection influences the evolution of dispersal is the key to understanding the life history of organisms. A key component in the study of species sorting is to understand how local abiotic factors influence the behavior as well as composition of resident communities. For instance, how does the increase in turbulent diffusion in water columns affect the persistence of phytoplankton populations? Can a river organism persist with increased river discharge? If it persists, how will its range limit be changed? Understanding the answers to these questions can facilitate the development of better management strategies for natural resources. The investigators study these and related questions in this project under the framework of evolutionary game theory. Since its inception in the 1970s, evolutionary game theory has proven itself to be invaluable in explaining many complex and challenging aspects of biological processes. However, most studies in evolutionary game theory have, until recently, ignored the effect of space. This is partly due to the mathematical difficulty arising from the analysis of spatially explicit models. The investigators and their colleagues will undertake the investigation of the evolution of dispersal, via discrete as well as continuous mathematical modeling approaches. More precisely, this project studies the evolutionarily stable strategies in dispersal models. An evolutionarily stable strategy is a strategy which, if adopted by a population in a given environment, assures that the population cannot be invaded by a mutant that is initially rare. This project focuses on finding evolutionarily stable dispersal strategies in homogeneous or heterogeneous environments in two distinct directions: (i) Previous studies have shown that a balanced dispersal strategy for continuous-time and discrete-space models can replace any other unbalanced dispersal strategy. On the other hand, studies have also shown that a balanced dispersal strategy for discrete-time and discrete-space models may not be able to replace some unbalanced dispersal strategies. This project seeks a unified approach to study the evolutionary stability of balanced dispersal in discrete, continuous and nonlocal models, and to resolve the disparities between different modeling approaches; (ii) Unidirectional flow in water columns often pushes individuals away from favorable environments and also induces a net loss of individuals from the habitat. Previous studies show that advection often puts slow dispersers at a disadvantage. The investigators will study whether larger dispersal rates will always evolve or if some intermediate dispersal rate will be selected, in homogeneous or heterogeneous, open or closed environments. Connections between the evolution of dispersal and range limit of species will be investigated. The mathematical tools include variational method, elliptic and parabolic regularity theory, monotone dynamical system theory, and numerical simulations.
阐明自然选择影响分散的演变的机制是理解生物体生活历史的关键。物种分类研究的关键组成部分是了解局部非生物因素如何影响居民社区的行为和组成。例如,水柱中湍流扩散的增加如何影响浮游植物种群的持久性?河流生物可以随着河流排出而持续吗?如果持续存在,如何更改其范围限制?了解这些问题的答案可以促进为自然资源提供更好的管理策略的制定。研究人员根据进化游戏理论的框架研究了该项目中的这些和相关问题。自1970年代成立以来,进化游戏理论已证明自己在解释生物过程的许多复杂而充满挑战的方面是无价的。但是,直到最近,大多数进化游戏理论的研究都忽略了空间的影响。这部分是由于分析空间显式模型引起的数学困难。研究人员及其同事将通过离散和连续的数学建模方法进行分散演变的调查。更确切地说,该项目研究了分散模型中进化稳定的策略。进化上稳定的策略是一种策略,如果在给定环境中被人群采用,可以确保人口不能被最初罕见的突变体入侵。该项目着重于在两个不同的方向上找到均质或异质环境中进化稳定的分散策略:(i)先前的研究表明,连续时间和离散空间模型的平衡分散策略可以替代任何其他不平衡的分散策略。另一方面,研究还表明,离散时间和离散空间模型的平衡分散策略可能无法替代某些不平衡的分散策略。该项目寻求一种统一的方法来研究平衡分散在离散,连续和非本地模型中的进化稳定性,并解决不同建模方法之间的差异。 (ii)水柱中的单向流动通常会使个体远离有利的环境,并引起栖息地的净损失。先前的研究表明,对流通常会使缓慢的分散剂处于不利地位。研究人员将研究较大的分散率是否会始终发展,或者是否将在同质或异质,开放或封闭环境中选择某些中间分散率。将研究分散的演变与物种范围极限之间的联系。数学工具包括变分方法,椭圆和抛物线规则理论,单调动力学系统理论和数值模拟。
项目成果
期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evolution of dispersal in closed advective environments
- DOI:10.1080/17513758.2014.969336
- 发表时间:2015-06
- 期刊:
- 影响因子:2.8
- 作者:King-Yeung Lam;Y. Lou;F. Lutscher
- 通讯作者:King-Yeung Lam;Y. Lou;F. Lutscher
Multiple steady-states in phytoplankton population induced by photoinhibition
- DOI:10.1016/j.jde.2014.12.012
- 发表时间:2015-04
- 期刊:
- 影响因子:2.4
- 作者:Yihong Du;S. Hsu;Y. Lou
- 通讯作者:Yihong Du;S. Hsu;Y. Lou
Global Existence and Uniform Boundedness of Smooth Solutions to a Cross-Diffusion System with Equal Diffusion Rates
- DOI:10.1080/03605302.2015.1052882
- 发表时间:2015-08
- 期刊:
- 影响因子:1.9
- 作者:Y. Lou;M. Winkler
- 通讯作者:Y. Lou;M. Winkler
The Role of Advection in a Two-species Competition Model: A Bifurcation Approach
- DOI:10.1090/memo/1161
- 发表时间:2017-01
- 期刊:
- 影响因子:0
- 作者:Isabel Averill;King-Yeung Lam;Y. Lou
- 通讯作者:Isabel Averill;King-Yeung Lam;Y. Lou
A remark on the global dynamics of competitive systems on ordered Banach spaces
- DOI:10.1090/proc12768
- 发表时间:2015-03
- 期刊:
- 影响因子:0
- 作者:King-Yeung Lam;Daniel S. Munther
- 通讯作者:King-Yeung Lam;Daniel S. Munther
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuan Lou其他文献
Unveiling the hidden impact: Subclinical hypercortisolism and its subtle influence on bone health
揭开隐藏的影响:亚临床皮质醇增多症及其对骨骼健康的微妙影响
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yuan Lou;Luping Ren;Huan Chen;Tian Zhang;Qi Pan - 通讯作者:
Qi Pan
Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment
平流均质环境中Lotka-Volterra竞争系统的定性分析
- DOI:
10.3934/dcds.2016.36.953 - 发表时间:
2015-08 - 期刊:
- 影响因子:0
- 作者:
Yuan Lou;Dongmei Xiao;Peng Zhou - 通讯作者:
Peng Zhou
Design of a high voltage stimulator chip for a stroke rehabilitation system
中风康复系统高压刺激器芯片的设计
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Lei Zeng;Xin Yi;Sheng Lu;Yuan Lou;Jianfei Jiang;Hongen Qu;N. Lan;Guoxing Wang - 通讯作者:
Guoxing Wang
Two-stage Pipelined SRAM Design Based on 14nm FinFET Process
基于14nm FinFET工艺的两级流水线SRAM设计
- DOI:
10.1145/3573428.3573497 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Yuan Lou;Lijun Zhang;Yuling Yan;Lijun Ma;Zhongda Zhang - 通讯作者:
Zhongda Zhang
Low-Income Women Entrepreneurs and Household Sustainability in Badagry; A Border Community in Lagos, Nigeria
巴达格里的低收入女企业家和家庭可持续发展;
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Lei Zeng;Xin Yi;Sheng Lu;Yuan Lou;Jianfei Jiang;Hongen Qu;N. Lan;Guoxing Wang - 通讯作者:
Guoxing Wang
Yuan Lou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuan Lou', 18)}}的其他基金
Workshop on Partial Differential Equation Models of Biological Processes
生物过程偏微分方程模型研讨会
- 批准号:
1025482 - 财政年份:2011
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Nonrandom Dispersal of Interacting Species in Heterogeneous Landscapes
异质景观中相互作用物种的非随机扩散
- 批准号:
1021179 - 财政年份:2010
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Evolution of Conditional Dispersal and Population Dynamics
条件扩散和种群动态的演变
- 批准号:
0615845 - 财政年份:2006
- 资助金额:
$ 25万 - 项目类别:
Continuing grant
Nonlinear Problems From Combustion Theory and Biology
燃烧理论和生物学的非线性问题
- 批准号:
9996281 - 财政年份:1998
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Nonlinear Problems From Combustion Theory and Biology
燃烧理论和生物学的非线性问题
- 批准号:
9801609 - 财政年份:1998
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
运用跨尺度元动力学-粗粒化模拟技术研究固体分散体的分子结构和稳定性机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
砂-粉混合物的分散性失稳:宏观与局部稳定性关系研究与多尺度模拟
- 批准号:52278327
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于离子液体的高稳定性氢氧化镁纳米分散体可控制备机制研究
- 批准号:22278381
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
基于离子液体的高稳定性氢氧化镁纳米分散体可控制备机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于糖化活性域暴露的分散态肌原纤维蛋白稳定性促进机制研究
- 批准号:32272347
- 批准年份:2022
- 资助金额:55.00 万元
- 项目类别:面上项目
相似海外基金
Exploration of Sustainable Organic Synthesis Using Abundant and Stable Compounds
利用丰富且稳定的化合物进行可持续有机合成的探索
- 批准号:
22H02125 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
An adaptive cooperative mechanism for stable autonomous operation
稳定自主运行的自适应协作机制
- 批准号:
19K24358 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Surveillance of mosquito and arbovirus dispersal using smart microcrystals
使用智能微晶监测蚊子和虫媒病毒的传播
- 批准号:
9807932 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
"Why" Humans Can Move Stable ?: Mathematical Elucidation of Motion Stability of Artificial Musculoskeletal Robots.
“为什么”人类可以稳定移动?:人工肌肉骨骼机器人运动稳定性的数学解析。
- 批准号:
18K13718 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Irreversible molecular diffusion of polymers under a stable temperature gradient: Universality and system dependent behavior
稳定温度梯度下聚合物的不可逆分子扩散:普遍性和系统依赖性行为
- 批准号:
17K06005 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)