Evolution of Conditional Dispersal and Population Dynamics
条件扩散和种群动态的演变
基本信息
- 批准号:0615845
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-09-15 至 2010-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project investigates the effects of conditional dispersal on dynamics of single and multiple interacting species. A common underlying assumption in theoretical studies of population dynamics is that dispersal rates are uniform across space. However, such simplification can yield misleading results because the surrounding environment can vary both spatially and temporally. Indeed, animals tend to sense and respond to local environmental cues by dispersing directionally, and their movements are often combinations of both random and directed ones. Reaction-diffusion-advection equations serve as one of the major approaches to understanding spatial-temporal processes such as dispersal, and are used in this research to model both random and directed movements of species and population dynamics. Three kinds of conditional dispersal strategies will be studied in this project. The first one is the direct movement of populations along environmental gradients or along density-dependent growth rate gradients, and the goal is to determine the effects of such biased movement on both single population and multiple competing species. The second dispersal strategy concerns area-restricted search of predators, and the purpose is to understand how biased foraging behaviors of predators can induce the aggregation of predators. The third is a dynamical model for ideal free distribution theory, which assumes that species choose habitats in such a way that each individual tries to maximize its reproduction fitness. The aim is to obtain a better understanding of interactions between such dispersal strategy and population dynamics. To address these biological questions, the principal investigator will use mathematical methods which include regularity theory for elliptic and parabolic operators, analysis of eigenvalue problems, maximum principles, bifurcation analysis, monotone system theory, permanence theory, and perturbation analysis.The purpose of this project is to increase our understanding of how populations disperse in response to spatially varying environments, to determine which patterns of dispersal strategy can confer some selective or ecological advantage, and to provide insights on biodiversity issues such as habitat fragmentation and invasions of new species. Preliminary investigations show that the geometry of habitat can play important roles in the evolution of dispersal, and also that strong directed movement of a species can induce coexistence with its competitors. Materials from this project will be modified and used as team projects for a Mathematical Biosciences Institute Summer Program for college teachers and graduate students in mathematics and biology.
该项目研究条件分散对单个相互作用物种的动态的影响。 人口动态的理论研究中的一个共同基础假设是,分散率在整个空间之间是均匀的。 但是,这种简化可以产生误导性的结果,因为周围环境可以在空间和时间上变化。 的确,动物倾向于通过方向分散来感知并应对当地的环境线索,而它们的运动通常是随机和有向动物的组合。 反应扩散 - 辅助方程是理解时空过程(例如分散)的主要方法之一,并在本研究中用于模拟物种和种群动态的随机运动和定向运动。 该项目将研究三种条件分散策略。 第一个是人口沿环境梯度的直接运动或沿密度依赖性生长速率梯度的直接运动,目标是确定这种偏见运动对单人群和多个竞争物种的影响。 第二个分散策略涉及对捕食者的限制性搜索,目的是了解捕食者的觅食行为如何诱导捕食者的聚集。 第三个是理想自由分布理论的动力学模型,该模型假设物种选择栖息地,以使每个人都试图最大化其繁殖适应性。 目的是更好地了解这种分散策略与人口动态之间的相互作用。为了解决这些生物学问题,主要研究者将使用数学方法,包括用于椭圆形和抛物线运营商的规律性理论,特征问题问题的分析,最大原理,分叉分析,单调系统理论,持久性理论,持久性理论和扰动分析。或生态优势,并就生物多样性问题(例如栖息地分裂和新物种的入侵)提供见解。 初步调查表明,栖息地的几何形状可以在分散的演变中起重要作用,而且物种的强烈定向运动可以引起与竞争对手的共存。 该项目的材料将被修改并用作数学生物科学研究所夏季计划的团队项目,用于数学和生物学领域的大学教师和研究生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuan Lou其他文献
Unveiling the hidden impact: Subclinical hypercortisolism and its subtle influence on bone health
揭开隐藏的影响:亚临床皮质醇增多症及其对骨骼健康的微妙影响
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yuan Lou;Luping Ren;Huan Chen;Tian Zhang;Qi Pan - 通讯作者:
Qi Pan
Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment
平流均质环境中Lotka-Volterra竞争系统的定性分析
- DOI:
10.3934/dcds.2016.36.953 - 发表时间:
2015-08 - 期刊:
- 影响因子:0
- 作者:
Yuan Lou;Dongmei Xiao;Peng Zhou - 通讯作者:
Peng Zhou
Design of a high voltage stimulator chip for a stroke rehabilitation system
中风康复系统高压刺激器芯片的设计
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Lei Zeng;Xin Yi;Sheng Lu;Yuan Lou;Jianfei Jiang;Hongen Qu;N. Lan;Guoxing Wang - 通讯作者:
Guoxing Wang
Two-stage Pipelined SRAM Design Based on 14nm FinFET Process
基于14nm FinFET工艺的两级流水线SRAM设计
- DOI:
10.1145/3573428.3573497 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Yuan Lou;Lijun Zhang;Yuling Yan;Lijun Ma;Zhongda Zhang - 通讯作者:
Zhongda Zhang
Low-Income Women Entrepreneurs and Household Sustainability in Badagry; A Border Community in Lagos, Nigeria
巴达格里的低收入女企业家和家庭可持续发展;
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Lei Zeng;Xin Yi;Sheng Lu;Yuan Lou;Jianfei Jiang;Hongen Qu;N. Lan;Guoxing Wang - 通讯作者:
Guoxing Wang
Yuan Lou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuan Lou', 18)}}的其他基金
Evolutionarily Stable Dispersal Strategies in Spatial Models
空间模型中的进化稳定扩散策略
- 批准号:
1411476 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
Workshop on Partial Differential Equation Models of Biological Processes
生物过程偏微分方程模型研讨会
- 批准号:
1025482 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
Nonrandom Dispersal of Interacting Species in Heterogeneous Landscapes
异质景观中相互作用物种的非随机扩散
- 批准号:
1021179 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
Nonlinear Problems From Combustion Theory and Biology
燃烧理论和生物学的非线性问题
- 批准号:
9996281 - 财政年份:1998
- 资助金额:
-- - 项目类别:
Standard Grant
Nonlinear Problems From Combustion Theory and Biology
燃烧理论和生物学的非线性问题
- 批准号:
9801609 - 财政年份:1998
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
工作还是休闲?有条件自动驾驶中非驾驶任务价值对驾驶体验与接管表现的影响
- 批准号:72301033
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
有条件自动驾驶汽车驾驶人疲劳演化机理与协同调控方法
- 批准号:52372341
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
鉴定BACE2为有条件的促进阿尔茨海默症的β分泌酶
- 批准号:81870832
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
面向妇幼保健服务需方的有条件现金转移支付财政激励机制研究
- 批准号:71874199
- 批准年份:2018
- 资助金额:48.0 万元
- 项目类别:面上项目
G蛋白亚基在味觉信号传导和味蕾细胞更新中的作用
- 批准号:81671016
- 批准年份:2016
- 资助金额:58.0 万元
- 项目类别:面上项目
相似海外基金
制約付き固有値問題に基づく局所潜在空間生成とその大規模分散データ解析への応用
基于约束特征值问题的局部潜在空间生成及其在大规模分布式数据分析中的应用
- 批准号:
23H03411 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Mathematical and Experimental Analysis of Competitive and Predator-Prey Models: Conditional Dispersal on Patches to Landscapes
合作研究:竞争模型和捕食者-被捕食模型的数学和实验分析:景观斑块的条件扩散
- 批准号:
2150947 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Mathematical and Experimental Analysis of Competitive and Predator-Prey Models: Conditional Dispersal on Patches to Landscapes
合作研究:竞争模型和捕食者-被捕食模型的数学和实验分析:景观斑块的条件扩散
- 批准号:
2150945 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Mathematical and Experimental Analysis of Competitive and Predator-Prey Models: Conditional Dispersal on Patches to Landscapes
合作研究:竞争模型和捕食者-被捕食模型的数学和实验分析:景观斑块的条件扩散
- 批准号:
2150946 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
動的境界条件を有する拡散方程式の非線形問題への展開
具有动态边界条件的扩散方程对非线性问题的发展
- 批准号:
20K03689 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)