Investigation of Degradation Mechanisms in Layered Oxide Cathodes for Na Ion Batteries

钠离子电池层状氧化物阴极降解机制的研究

基本信息

  • 批准号:
    1410936
  • 负责人:
  • 金额:
    $ 46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

Non-Technical AbstractLithium ion batteries are widely used as power sources in portable electronics and electric cars. However, the scarcity of lithium potentially limits the application of lithium ion batteries in future. Sodium ion battery is a promising alternative energy storage technology due to its potential to compete with lithium ion batteries in all performance categories, such as energy and power densities. More importantly, sodium is naturally abundant and sodium ion batteries can be manufactured at much lower cost. However, sodium ion batteries suffer from poor cycle life, largely due to the degradation and failure of the cathode. This research studies the degradation mechanism of the layered oxide cathode materials at bulk and microscopic scales. With support from the Solid State and Materials Chemistry Program in the Division of Materials Research, the goal is to understand the structural evolution of the cathode materials during battery cycling and to develop means of mitigating electrode degradations for improving the cycle life of sodium ion batteries. The project involves close collaborations between experiment and modeling. Research opportunities are provided to train both graduate and undergraduate students. The project also involves the course development for high school students. Technical AbstractSodium ion battery is a promising energy storage device with low cost. However, the severe degradation of cathodes can drastically limit the cycle life of sodium ion batteries. The project aims to elucidate the degradation mechanisms in the cathode of sodium ion batteries using the layered metal oxides as model systems. The research hypothesis is that the mechanical degradations are primarily responsible for the capacity fade and accordingly poor cycle stability in layered oxide cathodes. Model compounds, such as sodium manganese oxide, are synthesized and electrochemically tested in half cells. In situ X-ray diffraction is used to study the structural change of the bulk cathode materials, and in situ transmission electron microscopy is used to observe the microscopic structural changes. Based on the experimental observations and analyses, multiscale chemomechanical models are developed to rationalize and predict the degradation mechanism of the cathodes. This research not only enables the design of high performance electrode materials for sodium ion battery with long cycle life, but also develops novel in situ experimental techniques to advance the fundamental research of solid state chemistry.
非技术抽象升离离子电池被广泛用作便携式电子和电动汽车中的电源。但是,锂的稀缺性可能限制了将来锂离子电池的应用。钠离子电池是一种有希望的替代储能技术,因为它有可能与所有性能类别(例如能量和功率密度)中的锂离子电池竞争。更重要的是,钠自然丰富,并且可以以更低的成本制造钠离子电池。但是,钠离子电池的周期寿命差,主要是由于阴极的降解和失败。该研究研究了在散装和微观尺度上分层氧化物阴极材料的降解机制。在材料研究部中固态和材料化学计划的支持下,目标是了解电池循环过程中阴极材料的结构演化,并开发减轻电极降解的方法,以改善钠离子电池的循环寿命。该项目涉及实验与建模之间的密切合作。提供研究机会来培训研究生和本科生。该项目还涉及高中生的课程开发。技术摘要离子电池是一种有前途的储能设备,成本低。但是,阴极的严重降解可以大大限制钠离子电池的循环寿命。该项目旨在阐明使用分层金属氧化物作为模型系统的钠离子电池阴极中的降解机制。研究假设是,机械降解主要是造成能力褪色的,因此分层氧化物阴极中的循环稳定性较差。模型化合物(例如锰氧化钠)在半细胞中合成并进行电化学测试。原位X射线衍射用于研究散装阴极材料的结构变化,原位透射电子显微镜用于观察显微镜结构变化。基于实验观测和分析,开发了多尺度化学力学模型,以合理化和预测阴极的降解机制。这项研究不仅可以设计具有较长循环寿命的钠离子电池的高性能电极材料,而且还可以开发出新颖的原位实验技术来推进固态化学的基本研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Hailong Chen其他文献

Expression profiles and functional annotation analysis of mRNAs in suprachiasmatic nucleus of Clock mutant mice.
Clock突变小鼠视交叉上核mRNA的表达谱和功能注释分析。
  • DOI:
  • 发表时间:
    2018
    2018
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Yanli Wang;Ke Lv;Mei Zhao;Fengji Liang;Hailong Chen;Guohua Ji;Tingmei Wang;Yongliang Zhang;Hongqing Cao;Yinghui Li;Lina Qu
    Yanli Wang;Ke Lv;Mei Zhao;Fengji Liang;Hailong Chen;Guohua Ji;Tingmei Wang;Yongliang Zhang;Hongqing Cao;Yinghui Li;Lina Qu
  • 通讯作者:
    Lina Qu
    Lina Qu
Performance Analysis for a Wave Energy Harvester of Piezoelectric Cantilever Beam
压电悬臂梁波浪能采集器性能分析
  • DOI:
  • 发表时间:
    2018
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ming Liu;Hengxu Liu;Hailong Chen;Yuanchao Chai;Liquan Wang
    Ming Liu;Hengxu Liu;Hailong Chen;Yuanchao Chai;Liquan Wang
  • 通讯作者:
    Liquan Wang
    Liquan Wang
A supercomplex, approximately 720 kDa and composed of both photosystem reaction centers, dissipates excess energy by PSI in green macroalgae under salt stress
约 720 kDa 的超级复合物由两个光系统反应中心组成,在盐胁迫下通过 PSI 耗散绿色大型藻类中的多余能量
  • DOI:
  • 发表时间:
    2019
    2019
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Shan Gao;Zheng Chi;Hailong Chen;Zhenbing Zheng;Yuxiang Weng;Guangce Wang
    Shan Gao;Zheng Chi;Hailong Chen;Zhenbing Zheng;Yuxiang Weng;Guangce Wang
  • 通讯作者:
    Guangce Wang
    Guangce Wang
A generalized peridynamic material correspondence formulation using non-spherical influence functions
使用非球形影响函数的广义近场动力学材料对应公式
Ulinastatin attenuates cerebral ischemia-reperfusion injury in rats.
乌司他丁减轻大鼠脑缺血再灌注损伤。
共 60 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 12
前往

Hailong Chen的其他基金

Collaborative Research: Guiding synthesis of nanoparticles with nanometric phase diagram and in situ X-ray diffraction
合作研究:用纳米相图和原位X射线衍射指导纳米颗粒的合成
  • 批准号:
    2004878
    2004878
  • 财政年份:
    2020
  • 资助金额:
    $ 46万
    $ 46万
  • 项目类别:
    Standard Grant
    Standard Grant
SusChem: Development and fundamental investigation of high capacity cathode materials for high energy and low cost Na-ion batteries
SusChem:高能低成本钠离子电池高容量正极材料的开发与基础研究
  • 批准号:
    1706723
    1706723
  • 财政年份:
    2017
  • 资助金额:
    $ 46万
    $ 46万
  • 项目类别:
    Standard Grant
    Standard Grant
SusChem: Development and fundamental investigation of a novel low cost recycling technology for spent Li-ion batteries
SusChem:新型低成本废旧锂离子电池回收技术的开发和基础研究
  • 批准号:
    1605692
    1605692
  • 财政年份:
    2016
  • 资助金额:
    $ 46万
    $ 46万
  • 项目类别:
    Standard Grant
    Standard Grant

相似国自然基金

口腔黏膜下纤维性变中赖氨酸羟化酶2异常活化抑制胶原降解的机制研究
  • 批准号:
    82301102
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
增材制造锌镁合金复合椎间融合器降解调控机制与生物学效应研究
  • 批准号:
    52301302
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
大黄鱼冷藏过程特定腐败菌作用的肌苷酸关联物降解机制
  • 批准号:
    32302174
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
circRIMS2调控GluN2B泛素化降解参与阿尔茨海默病早期突触障碍的机制研究
  • 批准号:
    82372337
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

PKR sensing of mitochondrial dsRNA in childhood Sjogrens disease
儿童干燥病线粒体 dsRNA 的 PKR 传感
  • 批准号:
    10637496
    10637496
  • 财政年份:
    2023
  • 资助金额:
    $ 46万
    $ 46万
  • 项目类别:
Stress Response Mechanisms Regulating Neuronal Health in the Mammalian Central Nervous System.
调节哺乳动物中枢神经系统神经元健康的应激反应机制。
  • 批准号:
    10729206
    10729206
  • 财政年份:
    2023
  • 资助金额:
    $ 46万
    $ 46万
  • 项目类别:
Mechanisms of SARS-CoV2 translation initiation and shut-off of cellular protein synthesis
SARS-CoV2翻译启动和细胞蛋白质合成关闭的机制
  • 批准号:
    10609872
    10609872
  • 财政年份:
    2022
  • 资助金额:
    $ 46万
    $ 46万
  • 项目类别:
A novel mouse model to distinguish the specific physiological significance of RNAi and biophysical mechanisms of microRNA
区分RNAi特定生理意义和microRNA生物物理机制的新型小鼠模型
  • 批准号:
    10351415
    10351415
  • 财政年份:
    2022
  • 资助金额:
    $ 46万
    $ 46万
  • 项目类别:
Uncovering the substrate recognition mechanisms of the E3 ligase adaptor cereblon
揭示 E3 连接酶接头 cereblon 的底物识别机制
  • 批准号:
    10446251
    10446251
  • 财政年份:
    2022
  • 资助金额:
    $ 46万
    $ 46万
  • 项目类别: