Collaborative Research: Specification and Estimation of Exponential Family Random Graph Models for Weighted Networks
合作研究:加权网络指数族随机图模型的规范和估计
基本信息
- 批准号:1357606
- 负责人:
- 金额:$ 7.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-04-15 至 2016-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Understanding the effect of network synergies on dynamic relational processes plays an important role in a number of real-world research settings. Examples include understanding what forms of monetary and social policy reduce the instance of international financial contagion, and the role of different physiological conditions on the activity levels of different interconnected regions in the human brain. Statistical insights into areas such as these require analytical methods which deal with both the presence and absence of ties as well as tie strengths between units in networks. This project focuses on the development and implementation of statistical methods and software for the analysis of weighted (i.e., tie strength) network data. The generalized exponential random graph model (GERGM) is a powerful tool for formulating and testing hypotheses about networks. The project will advance the current state of development of the GERGM by (1) developing a better understanding of the space of network probability distributions that can be formulated with the GERGM; developing Markov Chain Monte Carlo methods for estimation, which will broaden the class of GERGM specifications for which estimation is feasible; (3) developing special-case GERGM constraints that facilitate the study of correlation matrices as networks; and (4) developing asymptotic theory regarding the properties of the GERGM family. As part of this research, two illustrative applications of the GERGM will be developed. The first one involves the analysis of global environmental public policy networks, which offers insight into the network properties of global environmental faction and cooperation. The second application involves the analysis of neural activity networks in humans, which aims to understand complex dependencies connecting regions of the brain. Given the recent explosion in the application of statistical network models in fields as diverse as sociology, genetics, neuroscience, political science, physics, finance, linguistics, and ecology, it is expected that the statistical methods developed in this project will be relevant to a number of different fields. One of the leading fields, in terms of the prominence of weighted network data, is neuroscience. One of the aims of this project is to contribute to the multi-agency initiative on Brain Research through Advancing Innovative Neurotechnologies. This project offers two additional contributions that will facilitate the statistical study of weighted networks. First, this project will contribute and disseminate free and open-source statistical software that permits user-friendly applications. Second, the material developed in this project will be incorporated into graduate-level research methods coursework and workshops.
了解网络协同效应对动态关系过程的影响在许多现实世界的研究环境中发挥着重要作用。 例如,了解哪些形式的货币和社会政策可以减少国际金融传染的情况,以及不同的生理条件对人脑不同相互关联区域的活动水平的作用。 对此类领域的统计洞察需要分析方法来处理联系的存在和不存在以及网络中各单位之间的联系强度。 该项目的重点是开发和实施用于分析加权(即联系强度)网络数据的统计方法和软件。 广义指数随机图模型 (GERGM) 是制定和测试网络假设的强大工具。 该项目将通过以下方式推进 GERGM 的当前发展状态:(1) 更好地理解可以用 GERGM 制定的网络概率分布空间;开发用于估计的马尔可夫链蒙特卡罗方法,这将扩大估计可行的 GERGM 规范的类别; (3) 开发特殊情况的 GERGM 约束,以促进相关矩阵作为网络的研究; (4) 发展关于 GERGM 家族特性的渐近理论。 作为本研究的一部分,将开发 GERGM 的两个说明性应用。 第一个涉及全球环境公共政策网络的分析,深入了解全球环境派系和合作的网络属性。 第二个应用涉及人类神经活动网络的分析,旨在了解连接大脑区域的复杂依赖关系。 鉴于最近统计网络模型在社会学、遗传学、神经科学、政治学、物理学、金融学、语言学和生态学等不同领域的应用激增,预计该项目中开发的统计方法将与以下领域相关:不同字段的数量。 就加权网络数据的重要性而言,神经科学是领先领域之一。 该项目的目标之一是通过推进创新神经技术为脑研究多机构倡议做出贡献。 该项目提供了两个额外的贡献,将促进加权网络的统计研究。 首先,该项目将贡献和传播允许用户友好的应用程序的免费开源统计软件。 其次,该项目开发的材料将纳入研究生水平的研究方法课程和研讨会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bruce Desmarais其他文献
Bruce Desmarais的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bruce Desmarais', 18)}}的其他基金
Collaborative Research: HNDS-I: Digitally Accountable Public Representation
合作研究:HNDS-I:数字化负责任的公共代表
- 批准号:
2318460 - 财政年份:2023
- 资助金额:
$ 7.81万 - 项目类别:
Standard Grant
Collaborative Research: Patterns, Context, and Secondary Impacts of State Policy Responses to the Pandemic
合作研究:国家应对疫情政策的模式、背景和次要影响
- 批准号:
2148215 - 财政年份:2022
- 资助金额:
$ 7.81万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: The Diffusion of State Policy Responses to the 2019 Novel Coronavirus
RAPID:合作研究:国家对 2019 年新型冠状病毒的政策反应的扩散
- 批准号:
2028675 - 财政年份:2020
- 资助金额:
$ 7.81万 - 项目类别:
Standard Grant
Collaborative Research: An Expanded Framework for Inferring Public Policy Diffusion Networks
合作研究:推断公共政策扩散网络的扩展框架
- 批准号:
1558661 - 财政年份:2016
- 资助金额:
$ 7.81万 - 项目类别:
Standard Grant
RIDIR: Collaborative Research: DAPPR: Diffusion Analytics for Public Policy Research
RIDIR:协作研究:DAPPR:公共政策研究的扩散分析
- 批准号:
1637089 - 财政年份:2016
- 资助金额:
$ 7.81万 - 项目类别:
Standard Grant
Collaborative Research: Specification and Estimation of Exponential Family Random Graph Models for Weighted Networks
合作研究:加权网络指数族随机图模型的规范和估计
- 批准号:
1619644 - 财政年份:2015
- 资助金额:
$ 7.81万 - 项目类别:
Standard Grant
Scientific Evidence in Regulation and Governance
监管和治理的科学证据
- 批准号:
1641047 - 财政年份:2015
- 资助金额:
$ 7.81万 - 项目类别:
Standard Grant
Scientific Evidence in Regulation and Governance
监管和治理的科学证据
- 批准号:
1360104 - 财政年份:2014
- 资助金额:
$ 7.81万 - 项目类别:
Standard Grant
相似国自然基金
大规格高强铝合金筋体框类零件渐进板锻热成形工艺及机理研究
- 批准号:52375354
- 批准年份:2023
- 资助金额:55 万元
- 项目类别:面上项目
大规格数控成形磨齿机几何与热误差逆向二次溯源及靶向补偿方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大规格尖角矩形管短流程渐进热辊弯成形成性机理研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
低压缩比大/厚规格结构用钢组织细化和组织均匀化研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
三角帆蚌珍珠层基质蛋白hic24、hic74和HcTyr对有核珍珠质量性状“规格”影响的研究
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
Comprehensive mapping of multimodal chromatin state in single cells
单细胞多模式染色质状态的综合绘图
- 批准号:
10323270 - 财政年份:2021
- 资助金额:
$ 7.81万 - 项目类别:
Collaborative Research: Specification of Excitatory Fates in the Spinal Cord
合作研究:脊髓兴奋性命运的规范
- 批准号:
1755340 - 财政年份:2018
- 资助金额:
$ 7.81万 - 项目类别:
Standard Grant
Collaborative Research: Specification of Excitatory Fates in the Spinal Cord
合作研究:脊髓兴奋性命运的规范
- 批准号:
1755354 - 财政年份:2018
- 资助金额:
$ 7.81万 - 项目类别:
Continuing Grant
Collaborative Research: Expeditions in Computing: The Science of Deep Specification
合作研究:计算探索:深度规范的科学
- 批准号:
1521602 - 财政年份:2015
- 资助金额:
$ 7.81万 - 项目类别:
Continuing Grant
Collaborative Research: Specification and Estimation of Exponential Family Random Graph Models for Weighted Networks
合作研究:加权网络指数族随机图模型的规范和估计
- 批准号:
1619644 - 财政年份:2015
- 资助金额:
$ 7.81万 - 项目类别:
Standard Grant