Collaborative Research: Geometric Mechanics for Locomoting Systems

合作研究:运动系统的几何力学

基本信息

  • 批准号:
    1361778
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

This effort seeks to understand and develop strategies for effective movement in biological and synthetic locomoting systems. Gaits are a fundamental aspect of animal locomotion; examples include a horse's walking, a fish's strokes, and a snake's slithering. In these motions, the animals undergo cyclic motions which interact with the surrounding environment to gain a net displacement over each cycle. The efficacy of such gaits suggests they form a core capability in locomotion of mechanical systems. Understanding the principles of gait-based locomotion offers two opportunities: to gain deep insight into biological processes and to create sophisticated synthetic locomotors to send mechanical systems into dangerous and dirty environments. To gain this insight, questions arise: how to model locomotion, and with this model, how to both evaluate and design gaits to achieve desired locomotive capabilities? In this project, the focus will be on limbless locomotors, including snakes, slender lizards, bacteria, spermatozoa and nematode worms. Limbless locomotor controllers for confined space applications, such as search and rescue in collapsed buildings and landslide debris, will be developed.The investigators' preliminary work reveals that geometric mechanics allows intuitive understanding of how and why gaits, produce successful locomotion. Much of the prior work with geometric tools, however, provided computationally burdensome approaches to design gaits: choose parameterized basis functions for gaits, simulate the motion of the system and then optimize the input parameters to find gaits that meet the design requirements. Such optimization with forward simulation is computationally expensive. Moreover, existing geometric approaches ignore real world considerations such as body-shape and granular (e.g., dirt) interaction between the mechanism and the environment. Therefore, the intellectual merit of this work is to advance the design and evaluation of gaits for complex systems by representing complex shapes as a basis of curvature functions, while all along empirically deriving from biological observation linear relationships between these parameters and the resulting displacement in granular media. Calculations will then take minutes rather than the days needed for multi-particle discrete element method (DEM) simulation, mitigating the challenges inherent in performing many experiments on real mechanical systems. This work will contribute to a new understanding of biological locomotors as well as help create life-life locomotion in mechanical systems.
这项努力旨在了解和制定有效运动的策略,以实现生物和合成机车系统。步态是动物运动的基本方面。例子包括一匹马的步行,鱼的笔触和蛇的滑行。在这些动作中,动物经历了与周围环境相互作用的循环运动,以在每个循环中获得净位移。这种步态的功效表明它们在机械系统的运动中构成了核心能力。了解基于步态的运动原理提供了两个机会:深入了解生物过程,并创建复杂的合成运动,以将机械系统发送到危险和肮脏的环境中。为了获得这种见解,出现问题:如何对运动进行建模,并使用此模型,如何评估和设计步态以获得所需的机车能力?在这个项目中,重点将放在有限的运动上,包括蛇,细长蜥蜴,细菌,精子和线虫蠕虫。将开发用于封闭空间应用的有限型运动控制器,例如在崩溃的建筑物和滑坡碎片中进行搜救。但是,使用几何工具的许多先前工作提供了设计步态的计算繁重方法:选择步态的参数化基础功能,模拟系统的运动,然后优化输入参数以找到满足设计要求的步态。使用正向模拟的优化在计算上是昂贵的。此外,现有的几何方法忽略了现实世界的考虑,例如身体形状和颗粒状(例如,污垢)之间的相互作用。因此,这项工作的智力优点是通过将复杂形状表示为曲率函数的基础来推进对复杂系统的步态的设计和评估,而沿经验依赖于这些参数之间的生物学观察线性关系以及在粒状培养基中产生的位移。然后,计算将需要几分钟而不是多粒子离散元素方法(DEM)仿真所需的天数,从而减轻对实际机械系统进行许多实验所固有的挑战。这项工作将有助于对生物运动的新理解,并有助于在机械系统中创造生命生活。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Goldman其他文献

Using Constrained Optimization (CONOP) to examine Ordovician graptolite distribution and richness from the Central Andean Basin and their comparison with additional data from North America and Baltoscandia
  • DOI:
    10.1016/j.palaeo.2023.111396
  • 发表时间:
    2023-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Blanca A. Toro;Nexxys C. Herrera Sánchez;Daniel Goldman
  • 通讯作者:
    Daniel Goldman
Exergy Theory of Value: Towards a Comprehensive Understanding of Economic Value Creation
价值火用理论:全面理解经济价值创造
  • DOI:
    10.2139/ssrn.4562648
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel Goldman
  • 通讯作者:
    Daniel Goldman
Atrial Fibrillation and Anterior Cerebral Artery Absence Reduce Cerebral Perfusion: A De Novo Hemodynamic Model
心房颤动和大脑前动脉缺如减少脑灌注:从头血流动力学模型
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Timothy J. Hunter;Jermiah J. Joseph;U. Anazodo;S. Kharche;C. McIntyre;Daniel Goldman
  • 通讯作者:
    Daniel Goldman
Retinoic acid and Twist1a regulate orbital development and extraocular muscle organization in zebrafish
  • DOI:
    10.1016/j.ydbio.2009.05.224
  • 发表时间:
    2009-07-15
  • 期刊:
  • 影响因子:
  • 作者:
    Alon Kahana;Anda-Alexandra Calinescu;Fairouz Elsaeidi;Donika Demiri;Brenda Bohnsack;Daniel Goldman
  • 通讯作者:
    Daniel Goldman
A Role for Gastric Point of Care Ultrasound in Postoperative Delayed Gastrointestinal Functioning
  • DOI:
    10.1016/j.jss.2022.02.028
  • 发表时间:
    2022-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ryan Lamm;Jamie Bloom;Micaela Collins;Daniel Goldman;David Beausang;Caitlyn Costanzo;Eric S. Schwenk;Benjamin Phillips
  • 通讯作者:
    Benjamin Phillips

Daniel Goldman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Goldman', 18)}}的其他基金

Collaborative Research: Using the Physics of Living Systems Student Research Network to Transmit Techniques and Train Talent
合作研究:利用生命系统物理学学生研究网络传播技术和培养人才
  • 批准号:
    2310741
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Mechanical Intelligence of Locomotion and Intrusion in Slender Organisms in Terradynamically Rich Terrain
地动力丰富地形中细长生物体运动和入侵的机械智能
  • 批准号:
    2310751
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: Simulating Autonomous Agents and the Human-Autonomous Agent Interaction
协作研究:框架:模拟自主代理和人机交互
  • 批准号:
    2209792
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Root Dynamics and Control in Heterogeneous Soft Substrates
合作研究:异质软基质中的根系动力学与控制
  • 批准号:
    1915355
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
EAGER: Collaborative Research: Creation of Active Granular Materials and Study of Emergent Properties
EAGER:合作研究:活性颗粒材料的创造和新特性的研究
  • 批准号:
    1933283
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Formation of a High Flux Student Research Network (HF-SRN) as a Laboratory for Enhancing Interaction in the PoLS SRN
合作研究:建立高通量学生研究网络(HF-SRN)作为增强 PoLS SRN 互动的实验室
  • 批准号:
    1806833
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Physical Aspects of Superorganism Physiology: Construction, Circulation, and Homeostasis in Fire Ant Colonies
超有机体生理学的物理方面:火蚁群的构建、循环和稳态
  • 批准号:
    1410971
  • 财政年份:
    2015
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
NRI: Collaborative Research: Exploiting Granular Mechanics to Enable Robotic Locomotion
NRI:合作研究:利用颗粒力学实现机器人运动
  • 批准号:
    1426443
  • 财政年份:
    2014
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Student Research Network in the Physics of Living Systems: Georgia Tech Node
生命系统物理学学生研究网络:佐治亚理工学院节点
  • 批准号:
    1205878
  • 财政年份:
    2012
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Locomotion Systems Science Workshop in Arlington, VA
弗吉尼亚州阿灵顿运动系统科学研讨会
  • 批准号:
    1240730
  • 财政年份:
    2012
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似国自然基金

基于几何约束和力感知的协作机器人自标定方法研究
  • 批准号:
    U22A20177
  • 批准年份:
    2022
  • 资助金额:
    257.00 万元
  • 项目类别:
    联合基金项目
基于平流层平台的空地一体化网络高效传输理论与方法研究
  • 批准号:
    61771358
  • 批准年份:
    2017
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
随机几何框架下的多层异构蜂窝网中物理层安全问题研究
  • 批准号:
    61401510
  • 批准年份:
    2014
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于随机几何和社交网络理论的D2D通信技术研究
  • 批准号:
    61471026
  • 批准年份:
    2014
  • 资助金额:
    82.0 万元
  • 项目类别:
    面上项目
基于计算几何与图论的动态目标协作搜索机制及其算法研究
  • 批准号:
    61173034
  • 批准年份:
    2011
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Conference: Workshops in Geometric Topology
合作研究:会议:几何拓扑研讨会
  • 批准号:
    2350374
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Workshops in Geometric Topology
合作研究:会议:几何拓扑研讨会
  • 批准号:
    2350373
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Parabolic Monge-Ampère Equations, Computational Optimal Transport, and Geometric Optics
合作研究:抛物线 Monge-AmpeÌre 方程、计算最优传输和几何光学
  • 批准号:
    2246606
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CAS: Collaborative Research: Separating Electronic and Geometric Effects in Compound Catalysts: Examining Unique Selectivities for Hydrogenolysis on Transition Metal Phosphides
CAS:合作研究:分离复合催化剂中的电子效应和几何效应:检验过渡金属磷化物氢解的独特选择性
  • 批准号:
    2409888
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Parabolic Monge-Ampère Equations, Computational Optimal Transport, and Geometric Optics
合作研究:抛物线 Monge-AmpeÌre 方程、计算最优传输和几何光学
  • 批准号:
    2246611
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了