SCH: EXP: Collaborative Research: Privacy-Preserving Framework for Publishing Electronic Healthcare Records

SCH:EXP:合作研究:发布电子医疗记录的隐私保护框架

基本信息

  • 批准号:
    1343976
  • 负责人:
  • 金额:
    $ 26.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

This project builds a novel privacy-preserving framework with both new algorithms and software tools to: 1) evaluate the effectiveness of current identifier-suppression techniques for Electronic Healthcare Record (EHR) data; 2) de-identify and anonymize EHR data to protect personal information without significantly reducing the utility of data for secondary data analysis. The proposed techniques eliminate the violation of privacy through re-identification, and facilitate the secondary usage, sharing, publishing and exchange of healthcare data without the risk of breaching protected health information (PHI). This new privacy-preserving framework injects the ICD-9-CM-aware constraint-based privacy-preserving techniques into EHRs to eliminate the threat of identifying an individual in the secondary use of research data. The proposed technique and development can be readily adapted to other types of healthcare databases in order to ensure privacy and prevent re-identification of published data. The project produces groundbreaking algorithms and tools for identifying privacy leakages and protecting personal privacy information in EHRs to improve healthcare data publishing. New privacy-preserving techniques developed in this project lead towards a new type of healthcare science for EHRs. The project also delivers fundamental advancements to engineering by showing how to integrate biomedical domain knowledge with a computationally advanced quantitative framework for preserving the privacy of published EHRs. HIPAA has established protocols and industry standards to protect the confidentiality of PHI. However, our results demonstrate that, even with regard to health data that meets HIPAA requirements, the risk of re-identification is not completely eliminated. By identifying the security vulnerabilities inherent in the HIPAA standards, our research develops a more rigorous security standard that greatly improves privacy protections by applying state-of-the-art algorithms. The developed data privacy-preserving framework has significant implications for the future of US healthcare data publishing and related applications. Specifically, the transition from paper records to EHRs has accelerated significantly since the passage of the HITECH Act of 2009. The Act provides monetary incentives for the "meaningful use" of EHRs. As a result, the quality and quantity of healthcare databases has risen sharply, which has renewed the public's fear of a breach of privacy of their medical information. This research work is innovative and crucial not only for facilitating EHR data publishing, but also for enhancing the development and promotion of EHRs. At the educational front, this project facilitates the development of novel educational tools to construct entirely new courses and laboratory classes for healthcare, data privacy, data mining, and a wide range of applications. As a result, it enhances the current instructional methods for teaching data privacy and data mining, and has compelling biomedical and healthcare applications that can facilitate learning of computational algorithms. This project involves both undergraduate and graduate students in the three participating institutions. The PIs make a strong effort to engage minority graduate and undergraduate students in research activities in order to increase their exposure to cutting-edge research.
该项目使用新算法和软件工具构建了一个新颖的隐私保护框架,以:1)评估当前电子医疗记录(EHR)数据标识符抑制技术的有效性; 2) 对 EHR 数据进行去识别化和匿名化处理,以保护个人信息,同时不会显着降低数据用于二次数据分析的效用。所提出的技术通过重新识别消除了对隐私的侵犯,并促进医疗数据的二次使用、共享、发布和交换,而不存在破坏受保护的健康信息(PHI)的风险。这种新的隐私保护框架将 ICD-9-CM 感知的基于约束的隐私保护技术注入 EHR,以消除在研究数据的二次使用中识别个人的威胁。所提出的技术和开发可以很容易地适应其他类型的医疗保健数据库,以确保隐私并防止已发布数据的重新识别。该项目开发了突破性的算法和工具,用于识别隐私泄露并保护电子病历中的个人隐私信息,以改善医疗数据发布。该项目中开发的新隐私保护技术引领了电子病历的新型医疗保健科学。该项目还展示了如何将生物医学领域知识与计算先进的定量框架相结合,以保护已发布的电子病历的隐私,从而为工程带来了根本性的进步。 HIPAA 已制定协议和行业标准来保护 PHI 的机密性。然而,我们的结果表明,即使健康数据符合 HIPAA 要求,重新识别的风险也没有完全消除。通过识别 HIPAA 标准中固有的安全漏洞,我们的研究开发了更严格的安全标准,通过应用最先进的算法大大提高了隐私保护。所开发的数据隐私保护框架对美国医疗数据发布和相关应用的未来具有重大影响。具体而言,自 2009 年《HITECH 法案》通过以来,从纸质记录向 EHR 的转变已显着加速。该法案为 EHR 的“有意义的使用”提供了金钱激励。结果,医疗保健数据库的质量和数量急剧上升,这再次引发了公众对其医疗信息隐私遭到侵犯的担忧。这项研究工作具有创新性,不仅对于促进电子病历数据发布,而且对于加强电子病历的发展和推广也至关重要。在教育方面,该项目促进了新型教育工具的开发,为医疗保健、数据隐私、数据挖掘和广泛的应用构建全新的课程和实验室课程。因此,它增强了当前数据隐私和数据挖掘教学的教学方法,并具有引人注目的生物医学和医疗保健应用程序,可以促进计算算法的学习。该项目涉及三个参与机构的本科生和研究生。 PI 大力吸引少数族裔研究生和本科生参与研究活动,以增加他们接触前沿研究的机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nan Zhang其他文献

Novel Approaches for Energy-Efficient Flexible Job-Shop Scheduling Problems
解决节能灵活作业车间调度问题的新方法
  • DOI:
    10.3303/cet2081138
  • 发表时间:
    2020-06-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nikolaos Rakovitis;Dan Li;Nan Zhang;J. Li;Liping Zhang;Xin Xiao
  • 通讯作者:
    Xin Xiao
Gamma knife radiosurgery as a primary treatment for prolactinomas.
伽玛刀放射外科作为泌乳素瘤的主要治疗方法。
  • DOI:
    10.3171/jns.2000.93.supplement_3.0010
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    L. Pan;Nan Zhang;En Ming Wang;B. Wang;J. Dai;P. Cai
  • 通讯作者:
    P. Cai
Hierarchical Hybrids: Hierarchically CdS Decorated 1D ZnO Nanorods‐2D Graphene Hybrids: Low Temperature Synthesis and Enhanced Photocatalytic Performance (Adv. Funct. Mater. 2/2015)
分层杂化物:分层 CdS 装饰的 1D ZnO 纳米棒 - 2D 石墨烯杂化物:低温合成和增强的光催化性能(Adv. Funct. Mater. 2/2015)
  • DOI:
    10.1002/adfm.201570010
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    19
  • 作者:
    Chuang Han;Zhang Chen;Nan Zhang;J. C. Colmenares;Yi‐Jun Xu
  • 通讯作者:
    Yi‐Jun Xu
Versatile publishing for privacy preservation
隐私保护的多功能发布
Influence of the OATP Polymorphism on the Population Pharmacokinetics of Methotrexate in Chinese Patients
OATP多态性对中国患者甲氨蝶呤群体药代动力学的影响
  • DOI:
    10.2174/1389200220666190701094756
  • 发表时间:
    2019-05-31
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Zhiqi Wang;Nan Zhang;Chao;Shu;Junyu Xu;Ying Zhou;Xia Zhao;Yimin Cui
  • 通讯作者:
    Yimin Cui

Nan Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nan Zhang', 18)}}的其他基金

Carbon-neutral pathways of recycling marine plastic waste
回收海洋塑料废物的碳中和途径
  • 批准号:
    EP/X039617/1
  • 财政年份:
    2023
  • 资助金额:
    $ 26.95万
  • 项目类别:
    Research Grant
FAI: Using Machine Learning to Address Structural Bias in Personnel Selection
FAI:利用机器学习解决人员选择中的结构性偏见
  • 批准号:
    2309853
  • 财政年份:
    2022
  • 资助金额:
    $ 26.95万
  • 项目类别:
    Standard Grant
FAI: Using Machine Learning to Address Structural Bias in Personnel Selection
FAI:利用机器学习解决人员选择中的结构性偏见
  • 批准号:
    2040807
  • 财政年份:
    2021
  • 资助金额:
    $ 26.95万
  • 项目类别:
    Standard Grant
The socio-economic dynamics of urbanization in China: Inequalities, child health and development
中国城市化的社会经济动态:不平等、儿童健康与发展
  • 批准号:
    ES/P009824/1
  • 财政年份:
    2016
  • 资助金额:
    $ 26.95万
  • 项目类别:
    Fellowship
SBIR Phase I: Real-Time Data Analytics Over The Deep Web
SBIR 第一阶段:深网实时数据分析
  • 批准号:
    1248486
  • 财政年份:
    2013
  • 资助金额:
    $ 26.95万
  • 项目类别:
    Standard Grant
TC: Small: Collaborative Research: Membership Inference in a Differentially Private World and Beyond
TC:小:协作研究:差异私人世界及其他世界中的成员资格推断
  • 批准号:
    1117297
  • 财政年份:
    2011
  • 资助金额:
    $ 26.95万
  • 项目类别:
    Standard Grant
I-Corps: Commercialization Feasibility Research and Demonstration Preparation for Privacy-Preserving Location Based Services
I-Corps:隐私保护位置服务的商业化可行性研究和示范准备
  • 批准号:
    1158737
  • 财政年份:
    2011
  • 资助金额:
    $ 26.95万
  • 项目类别:
    Standard Grant
III: Small: Collaborative Research: Suppressing Sensitive Aggregates Over Hidden Web Databases: a Novel and Urgent Challenge
III:小型:协作研究:抑制隐藏 Web 数据库上的敏感聚合:一项新颖而紧迫的挑战
  • 批准号:
    0915834
  • 财政年份:
    2009
  • 资助金额:
    $ 26.95万
  • 项目类别:
    Standard Grant
CAREER: A Theoretical Foundation for Achievability and Optimization in Privacy-Preserving Data Mining
职业:隐私保护数据挖掘的可实现性和优化的理论基础
  • 批准号:
    0852674
  • 财政年份:
    2008
  • 资助金额:
    $ 26.95万
  • 项目类别:
    Continuing Grant
Collaborative Research: WN: Proper Location Identification in Wireless Networks
合作研究:WN:无线网络中的正确位置识别
  • 批准号:
    0852673
  • 财政年份:
    2008
  • 资助金额:
    $ 26.95万
  • 项目类别:
    Continuing Grant

相似国自然基金

MYB、NAC等转录因子响应相对低温调控扩展蛋白EXP控制桂花花开放的分子机制
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
血管紧张素II在脑缺血再灌注损伤中的作用机制与新型AT1受体拮抗剂—化合物EXP-2528的保护作用研究
  • 批准号:
    30572187
  • 批准年份:
    2005
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

SCH: EXP: Collaborative Research: Privacy-Preserving Framework for Publishing Electronic Healthcare Records
SCH:EXP:合作研究:发布电子医疗记录的隐私保护框架
  • 批准号:
    1836945
  • 财政年份:
    2017
  • 资助金额:
    $ 26.95万
  • 项目类别:
    Standard Grant
SCH: EXP: Collaborative Research: Group-Specific Learning to Personalize Evidence-Based Medicine
SCH:EXP:协作研究:针对群体的特定学习以个性化循证医学
  • 批准号:
    1602394
  • 财政年份:
    2016
  • 资助金额:
    $ 26.95万
  • 项目类别:
    Standard Grant
SCH: EXP: Collaborative Research: Group-Specific Learning to Personalize Evidence-Based Medicine
SCH:EXP:协作研究:针对群体的特定学习以个性化循证医学
  • 批准号:
    1602198
  • 财政年份:
    2016
  • 资助金额:
    $ 26.95万
  • 项目类别:
    Standard Grant
SCH: EXP: Collaborative Research: Design of a wearable biosensor system with wireless network for the remote detection of life threatening events in neonates
SCH:EXP:协作研究:设计具有无线网络的可穿戴生物传感器系统,用于远程检测新生儿危及生命的事件
  • 批准号:
    1664815
  • 财政年份:
    2016
  • 资助金额:
    $ 26.95万
  • 项目类别:
    Standard Grant
SCH: EXP: Collaborative Research: Cognitive Haptic Based Rehabilitation System for Patient-Centric Home
SCH:EXP:协作研究:基于认知触觉的康复系统,用于以患者为中心的家庭
  • 批准号:
    1502339
  • 财政年份:
    2015
  • 资助金额:
    $ 26.95万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了