SCH: EXP: Collaborative Research: Smart Asthma Management: Statistical modeling, prognostics, and intervention decision making

SCH:EXP:协作研究:智能哮喘管理:统计建模、预后和干预决策

基本信息

  • 批准号:
    1343969
  • 负责人:
  • 金额:
    $ 47.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

Asthma is a common lung disease with acute and chronic manifestations that impacts more than 22.2 million Americans or 7.9% of the population, including over 6.7 million children younger than 18 years of age. The cost of asthma is significant both for individuals and for the society as a whole. It is highly desirable to establish transformative technologies to improve the patient quality of life and reduce the cost of asthma management. The recent development in sensor and mobile computing technology provide great opportunities to establish Smart Asthma Management (SAM) systems and achieve a quantum leap in asthma management. Leveraging on the fast development of information infrastructure, patients can create a detailed temporal log recording their symptoms, medicine usage, and possibly vital physiological signals through an easy access to a website or their smart phones in SAM systems. This unprecedented continuous stream of patient-generated data in SAM systems provides us significant opportunities to better estimate patient condition and make clinical intervention decisions. However, since the information infrastructure of SAM has not become available until recently, very limited work is available for SAM systems. Against this background, this collaborative project aims to develop a suite of statistical modeling, monitoring, prognosis, and clinical intervention decision making methodologies based on a flexible yet rigorous multistate model to describe the evolving of patient conditions. The true underlying state of the patient is assumed unknown; however, there is reason to expect that it could be inferred from patient generated data such as the frequency of the rescue inhaler usage (the time and frequency of the rescue inhaler use is an important indicator of asthma control). Some anticipated advances include: (i) Multistate model with event intensity function as observations. The proposed methodology brings the mixed effect model and the multistate model into a unified framework to integrate the population information embedded in the historical records of multiple patients and the individual information collected in real-time in a quantitative way. (ii) Stochastic filtering approach for individual patient condition modeling and updating. The novel state space formulation enables efficient stochastic filtering algorithms to estimate and update the states and parameters in the multistate model. (iii) Clinical intervention decision support for patients and clinicians. The salient features of the proposed policy are that it is based on a condition-based policy and incorporates uncertainties in the patient condition model through a Partially Observable Markov Decision Process (POMDP) framework which has been widely used and proven to be very effective in the management of industrial systems. Plans are in place to evaluate the effectiveness of the resulting technologies in collaboration with clinical experts. The project is likely to contribute predictive technologies that could help reduce the cost and improve the quality of healthcare in the US, especially as it relates to effective management of chronic illnessess. Additional broader impacts of the project include enhanced research-based training opportunities for graduate and undergraduate students (including members of under-represented minorities) in healthcare engineering, statistics, and operation research; enrichment of the curricula in health systems in industrial engineering and operations research at the University of Wisconsin-Madison and the University of Iowa.
哮喘是一种常见的肺部疾病,具有急性和慢性表现,影响超过2220万美国人或人口的7.9%,其中包括670万年龄在18岁以下的儿童。哮喘的成本对于个人和整个社会都很重要。建立变革性技术以提高患者生活质量并降低哮喘管理成本是非常理想的。传感器和移动计算技术的最新发展提供了建立智能哮喘管理(SAM)系统并实现哮喘管理的量子飞跃的绝佳机会。利用信息基础设施的快速开发,患者可以通过轻松访问网站或SAM系统中的智能手机来创建详细的时间日志,记录其症状,药物使用情况以及可能的生理信号。 SAM系统中的这种空前的患者生成数据的连续流为我们提供了更好的机会,可以更好地估计患者状况并做出临床干预决策。但是,由于直到最近才能使用SAM的信息基础架构,因此SAM Systems的工作非常有限。在这种背景下,这个协作项目旨在开发一套统计建模,监测,预后和临床干预决策制定方法,以灵活而严格的多态模型来描述患者状况的发展。假定患者的真实潜在状态未知;但是,有理由期望可以从患者生成的数据(例如救援吸入器使用频率)(救援吸入器使用的时间和频率)中推断出来,这是哮喘控制的重要指标)。一些预期的进步包括:(i)具有事件强度函数作为观测值的多层模型。所提出的方法将混合效应模型和多层模型带入一个统一的框架,以整合嵌入在多名患者的历史记录中的人群信息和以定量方式实时收集的个人信息。 (ii)单个患者状况建模和更新的随机过滤方法。新颖的状态空间公式使有效的随机滤波算法能够估算和更新多层模型中的状态和参数。 (iii)对患者和临床医生的临床干预决策支持。拟议政策的显着特征是,它基于基于条件的政策,并通过部分可观察到的马尔可夫决策过程(POMDP)框架在患者状况模型中纳入了不确定性,该框架已被广泛使用并证明在工业系统的管理中非常有效。制定了计划,以评估与临床专家合作的最终技术的有效性。该项目可能有助于预测技术,以帮助降低成本并提高美国的医疗保健质量,尤其是与有效管理慢性病有关。该项目的其他更广泛的影响包括在医疗保健工程,统计和运营研究中为研究生和本科生(包括代表性不足的少数民族成员)增强基于研究的培训机会;威斯康星大学麦迪逊分校和爱荷华大学的工业工程和运营研究中卫生系统课程的丰富。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shiyu Zhou其他文献

Bi-directional Sliced Latin Hypercube Designs
双向切片拉丁超立方体设计
  • DOI:
    10.5705/ss.2014.246
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Qiang Zhou;Tian Jin;Peter Z.G. Qian;Shiyu Zhou
  • 通讯作者:
    Shiyu Zhou
LITHIUM¿¿?ION BATTERY MANUFACTURING FOR ELECTRIC VEHICLES: A CONTEMPORARY OVERVIEW
  • DOI:
    10.1002/9781119060741.ch1
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jingshan Li;Shiyu Zhou;Yehui Han
  • 通讯作者:
    Yehui Han
Single T gate in a Clifford circuit drives transition to universal entanglement spectrum statistics
Clifford 电路中的单个 T 门推动向通用纠缠谱统计的过渡
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Shiyu Zhou;Zhi;A. Hamma;C. Chamon
  • 通讯作者:
    C. Chamon
Quality control and improvement for multistage systems : A survey 745
多级系统的质量控制和改进:调查 745
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jianjun Shi;Shiyu Zhou
  • 通讯作者:
    Shiyu Zhou
Spectrum of DNA variants for patients with hearing loss in 4 language families of 15 ethnicities from Southwestern China
  • DOI:
    10.1016/j.heliyon.2024.e38802
  • 发表时间:
    2024-10-30
  • 期刊:
  • 影响因子:
  • 作者:
    Jingyu Li;Shiyu Zhou;Jiahong Pei;Wanzhen Li;Rongjie Cui;Xiaofei Ren;Jingru Wei;Qian Li;Baosheng Zhu;Yaliang Sa;Yunlong Li
  • 通讯作者:
    Yunlong Li

Shiyu Zhou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shiyu Zhou', 18)}}的其他基金

Collaborative Research: Fusion of Siloed Data for Multistage Manufacturing Systems: Integrative Product Quality and Machine Health Management
协作研究:多级制造系统的孤立数据融合:集成产品质量和机器健康管理
  • 批准号:
    2323082
  • 财政年份:
    2024
  • 资助金额:
    $ 47.53万
  • 项目类别:
    Standard Grant
Collaborative Research: Structural Fault Diagnosis and Prognosis Utilizing a Physics-guided Data Analytics Approach
合作研究:利用物理引导的数据分析方法进行结构故障诊断和预测
  • 批准号:
    1824761
  • 财政年份:
    2018
  • 资助金额:
    $ 47.53万
  • 项目类别:
    Standard Grant
Enabling Cloud-Based Quality-Data Management Systems
启用基于云的质量数据管理系统
  • 批准号:
    1561512
  • 财政年份:
    2016
  • 资助金额:
    $ 47.53万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Data-driven Statistical Prognosis and Service Decision Making for Teleservice Systems
GOALI/协作研究:数据驱动的远程服务系统统计预测和服务决策
  • 批准号:
    1335129
  • 财政年份:
    2013
  • 资助金额:
    $ 47.53万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Modeling, Monitoring, and Analysis of Spatial Point Patterns for Manufacturing Quality Control
GOALI/协作研究:用于制造质量控制的空间点模式的建模、监控和分析
  • 批准号:
    1161077
  • 财政年份:
    2012
  • 资助金额:
    $ 47.53万
  • 项目类别:
    Standard Grant
Statistical Analysis and Control of Ultrasonic-based Aluminum Nano-composite Fabrication Processes
超声波铝纳米复合材料制造过程的统计分析与控制
  • 批准号:
    0926084
  • 财政年份:
    2009
  • 资助金额:
    $ 47.53万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Understanding and Controlling Variation Propagation in Periodic Structures: From Geometry to Dynamic Response
GOALI/合作研究:理解和控制周期性结构中的变异传播:从几何到动态响应
  • 批准号:
    0856222
  • 财政年份:
    2009
  • 资助金额:
    $ 47.53万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Event-Log-Based Failure Prediction and Maintenance Service for After-Sales Engineering Systems
GOALI/协作研究:售后工程系统基于事件日志的故障预测和维护服务
  • 批准号:
    0757683
  • 财政年份:
    2008
  • 资助金额:
    $ 47.53万
  • 项目类别:
    Standard Grant
CAREER: Multilevel Self-Improving Variation Modeling and Diagnosis for Complex Manufacturing Processes
职业:复杂制造过程的多层次自我改进变异建模和诊断
  • 批准号:
    0545600
  • 财政年份:
    2006
  • 资助金额:
    $ 47.53万
  • 项目类别:
    Standard Grant
Modeling, Analysis, and Control of Variation Propagation in Manufacturing Processes
制造过程中变异传播的建模、分析和控制
  • 批准号:
    0322147
  • 财政年份:
    2003
  • 资助金额:
    $ 47.53万
  • 项目类别:
    Standard Grant

相似国自然基金

尾部经验过程的分布式统计推断
  • 批准号:
    12301387
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大规模检验中的经验贝叶斯方法
  • 批准号:
    12371282
  • 批准年份:
    2023
  • 资助金额:
    44.00 万元
  • 项目类别:
    面上项目
后悔经验影响人类风险决策的计算建模及脑机制解析
  • 批准号:
    32371122
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
跨境数据流动的增长与福利效应:理论框架与经验证据
  • 批准号:
    72303261
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

SCH: EXP: Collaborative Research: Privacy-Preserving Framework for Publishing Electronic Healthcare Records
SCH:EXP:合作研究:发布电子医疗记录的隐私保护框架
  • 批准号:
    1836945
  • 财政年份:
    2017
  • 资助金额:
    $ 47.53万
  • 项目类别:
    Standard Grant
SCH: EXP: Collaborative Research: Group-Specific Learning to Personalize Evidence-Based Medicine
SCH:EXP:协作研究:针对群体的特定学习以个性化循证医学
  • 批准号:
    1602394
  • 财政年份:
    2016
  • 资助金额:
    $ 47.53万
  • 项目类别:
    Standard Grant
SCH: EXP: Collaborative Research: Design of a wearable biosensor system with wireless network for the remote detection of life threatening events in neonates
SCH:EXP:协作研究:设计具有无线网络的可穿戴生物传感器系统,用于远程检测新生儿危及生命的事件
  • 批准号:
    1664815
  • 财政年份:
    2016
  • 资助金额:
    $ 47.53万
  • 项目类别:
    Standard Grant
SCH: EXP: Collaborative Research: Group-Specific Learning to Personalize Evidence-Based Medicine
SCH:EXP:协作研究:针对群体的特定学习以个性化循证医学
  • 批准号:
    1602198
  • 财政年份:
    2016
  • 资助金额:
    $ 47.53万
  • 项目类别:
    Standard Grant
SCH: EXP: Collaborative Research: Preserving Privacy in Human Genomic Data
SCH:EXP:协作研究:保护人类基因组数据的隐私
  • 批准号:
    1502172
  • 财政年份:
    2015
  • 资助金额:
    $ 47.53万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了