Engineering Synthetic Symbiosis Between Plant and Bacteria to Deliver Nitrogen to Crops

工程植物和细菌之间的合成共生为作物提供氮

基本信息

  • 批准号:
    1331098
  • 负责人:
  • 金额:
    $ 242.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-01 至 2017-09-30
  • 项目状态:
    已结题

项目摘要

PI: John W. Peters (Montana State University)CoPIs: Jean-Michel Ane (University of Wisconsin - Madison), Michael Udvardi (The Samuel Roberts Nobel Foundation) and Christopher A. Voigt (Massachusetts Institute of Technology)Key Collaborators: Giles E. Oldroyd (John Innes Centre, UK) and Phillip S. Poole (John Innes Centre, Oxford University, UK)Nitrogen is an essential element of biological molecules and life on earth. Lack of usable nitrogen limits growth of microbes, plants, and animals. Scarcity of nitrogen in agricultural soils limits plant production of food, feed, fiber and fuel. Nature solved the nitrogen limitation problem via evolution of biological nitrogen fixation in a type of bacteria, diazotrophs, that are able to reduce atmospheric N2 to NH3, which is readily assimilated into biological molecules. Biological nitrogen fixation is promoted by a complex metal containing enzyme called nitrogenase, whose oxygen-sensitivity may explain its restricted distribution amongst bacteria. Some plants, including most legumes and a few non-legumes form intimate, nitrogen-fixing symbioses with diazotrophs that provide the plants with ammonia. As a consequence, legumes have been an integral part of sustainable agricultural systems for thousands of years. Unfortunately, many important food species, including the grasses maize/corn, rice, and wheat cannot establish effective nitrogen-fixing symbioses with diazotrophs, making them dependent on nitrogenous fertilizers for high yield. Large-scale use of industrially-produced nitrogen-fertilizer has doubled the influx of nitrogen into the terrestrial biogeochemical nitrogen-cycle, with serious negative consequences for human health and the natural environment. Therefore, the long-term sustainability of massive nitrogen-fertilizer inputs in agriculture has come into question. This project brings together an interdisciplinary team of investigators from the US and UK to solve the dual nitrogen problems of nitrogen-fertilizer over-use in developed countries and soil nitrogen-paucity in developing countries by developing effective endophytic (bacteria inside the root) and associative (bacteria attached outside the root) nitrogen-fixing symbioses in a model and a crop plant species. The overarching goal of the project is to develop effective N2-fixing symbioses between the model C4-grass, Setaria viridis, as well as the related crop species, Zea mays, with the endophytic bacterium, Rhizobium sp. IRBG74, as well as the associative bacterium, Pseudomonas fluorescenes Pf5. Successful deployment of biological nitrogen fixation in model or crop grass species will pave the way for a second Green Revolution to increase crop yields for resource-poor farmers and decrease the use and environmental-impact of industrial nitrogen-fertilizers by wealthier farmers. This project will establish a powerful new model system for the study of plant-microbe interactions and demonstrate the power of synthetic biology in engineering new associative relationships and interdependencies that have the potential to be universal for all crop plants. It will test this potential in the important crop, maize. The integrated US-UK research partnership will provide a unique training opportunity for students and post-doctoral associates with active exchange of personnel between academic laboratories and research foundations in both countries. Data and materials generated in the study including plasmid constructs and genetically modified bacterial and plant species will be made available via websites maintained in the US and the UK. To broaden the impact of the work, traditional and non-traditional outreach strategies will be used to help K-12 teachers, students, and the public understand the fundamentals and benefits of interdisciplinary research and the implications of synthetic biology for the next generation of biotechnological solutions in agriculture.
PI:John W. Peters(蒙大拿州立大学)CoPI:Jean-Michel Ane(威斯康星大学麦迪逊分校)、Michael Udvardi(塞缪尔·罗伯茨诺贝尔基金会)和 Christopher A. Voigt(麻省理工学院)主要合作者:Giles E Oldroyd(英国约翰·英尼斯中心)和 Phillip S. Poole(英国牛津大学约翰·英尼斯中心)氮是生物分子的重要元素。和地球上的生命。 可用氮的缺乏限制了微生物、植物和动物的生长。农业土壤中氮的缺乏限制了植物生产食物、饲料、纤维和燃料。 大自然通过一种细菌(固氮菌)的生物固氮进化解决了氮限制问题,这些细菌能够将大气中的 N2 还原为 NH3,而 NH3 很容易被生物分子同化。 生物固氮是由一种称为固氮酶的含复杂金属的酶促进的,其氧敏感性可以解释其在细菌中的有限分布。 一些植物,包括大多数豆科植物和一些非豆科植物,与为植物提供氨的固氮生物形成密切的固氮共生关系。 因此,数千年来豆类一直是可持续农业系统的组成部分。 不幸的是,许多重要的粮食物种,包括禾本科玉米/玉米、水稻和小麦,无法与固氮菌建立有效的固氮共生体,使它们依赖氮肥来获得高产。工业生产的氮肥的大规模使用使进入陆地生物地球化学氮循环的氮量增加了一倍,对人类健康和自然环境造成了严重的负面影响。 因此,农业中大量氮肥投入的长期可持续性受到质疑。该项目汇集了来自美国和英国的跨学科研究团队,通过开发有效的内生菌(根内细菌)和联合菌,解决发达国家氮肥过度使用和发展中国家土壤氮缺乏的双重氮问题。 (附着在根部外部的细菌)模型和农作物物种中的固氮共生体。 该项目的总体目标是在模型 C4 草、狗尾草以及相关作物物种玉米与内生细菌根瘤菌之间建立有效的固氮共生关系。 IRBG74 以及相关细菌荧光假单胞菌 Pf5。 在模型或作物草种中成功部署生物固氮将为第二次绿色革命铺平道路,以提高资源贫乏农民的作物产量,并减少富裕农民对工业氮肥的使用和对环境的影响。该项目将为研究植物-微生物相互作用建立一个强大的新模型系统,并展示合成生物学在设计新的关联关系和相互依赖性方面的力量,这些关系和相互依赖性有可能普遍适用于所有农作物。 它将测试重要作物玉米的这种潜力。 美英一体化研究伙伴关系将为学生和博士后提供独特的培训机会,两国学术实验室和研究基金会之间将积极进行人员交流。 研究中产生的数据和材料,包括质粒构建体和转基因细菌和植物物种,将通过美国和英国维护的网站提供。 为了扩大这项工作的影响力,将采用传统和非传统的推广策略来帮助 K-12 教师、学生和公众了解跨学科研究的基础知识和好处,以及合成生物学对下一代生物技术的影响。农业解决方案。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Peters其他文献

Between-School Ability Tracking and Ethnic Segregation in Secondary Schooling
中学教育中的校际能力跟踪和种族隔离
  • DOI:
    10.1007/s11256-013-0260-7
  • 发表时间:
    2020-02-19
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Hanno Kruse;Jingjing Huo;Valerio Baćak;Lars H. Andersen;Jason Schnittker;E. Cech;Jessi L. Smith;Anneke Metz;Lauren Apgar;Patricia A. McManus;Christopher Kollmeyer;John Peters;Janette Dill;Adrianne Frech;Patrick Ishizuka;C. Kyriakides;Arthur McLuhan;Karen Anderson;Lubna Bajjali;Ruud Wouters;Aaron Ponce;Jeremy Reynolds;Ashleigh E. McKinzie;E. Kennedy;Shyon Baumann;J. Johnston;Helen Kirsch;Christian Welzel;J. Hawdon;Colin Bernatzky;Matthew Costello;Brian L. Levy;Asad L. Asad;Alexandrea J. Ravenelle;Junia Howell;Hans;H. Winant;Rebecca Watts Hull;Joseph R. Bongiovi;Nicholas P. Dempsey;Lindsay M. Stevens;Daniel R. Alvord;Lauren Diamond;K. M. Byrd;E. Laxer;Zachary Wilmot;Zachary Parolin;Mario Venegas;Long Doan;Matthew B. Flynn;Jarmin Christine Yeh;I. Hellander;Samuel Clark;Elizabeth Rahilly;Rachel Romero;Sarah Tosh;Grace Davie;Lydia Rose;S. Mezey;Loretta E. Bass;Steven Vallas
  • 通讯作者:
    Steven Vallas
Enhancing access of combat-wounded veterans to specialist rehabilitation services: the VA Polytrauma Telehealth Network.
增加战斗受伤退伍军人获得专业康复服务的机会:VA Polytrauma Telehealth Network。
Evaluation of a hospital diabetes specialist nursing service: a randomized controlled trial
医院糖尿病专科护理服务的评估:随机对照试验
  • DOI:
    10.1046/j.1464-5491.2001.00470.x
  • 发表时间:
    2001-04-01
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    M. Davies;Simon Dixon;C. Currie;R. Davis;John Peters
  • 通讯作者:
    John Peters
Real Time Deconvolution of Adaptive Optics Ground Based Telescope Imagery
自适应光学地基望远镜图像的实时反卷积
  • DOI:
    10.1007/s40295-021-00285-w
  • 发表时间:
    2021-10-28
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Toby Sanders;R. Hedges;T. Schulz;Melena Abijaoude;John Peters;M. Steinbock;Anastacio Arreola;T. Holmes
  • 通讯作者:
    T. Holmes
Systemically administered MSCs given 24hrs after osteotomy do not affect bone formation in rat distraction osteogenesis
截骨后 24 小时全身给予 MSC 不会影响大鼠牵张成骨中的骨形成
  • DOI:
    10.1101/293514
  • 发表时间:
    2018-04-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jonathan Guevara;Zacharie Toth;Daniel Kim;John Peters;Adrian Marley;J. Watson;S. McBride
  • 通讯作者:
    S. McBride

John Peters的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Peters', 18)}}的其他基金

Collaborative Research: Understanding Downdrafts in Deep Convection
合作研究:了解深层对流中的下沉气流
  • 批准号:
    2149353
  • 财政年份:
    2022
  • 资助金额:
    $ 242.86万
  • 项目类别:
    Standard Grant
Improving Our Understanding of Pressure Perturbations in Cumulus Convection
提高我们对积云对流压力扰动的理解
  • 批准号:
    1841674
  • 财政年份:
    2019
  • 资助金额:
    $ 242.86万
  • 项目类别:
    Interagency Agreement
Connecting Physics and Engineering through a Modernization of the Advanced Laboratory Curriculum (CPE-MALC)
通过现代化的高级实验室课程将物理和工程联系起来(CPE-MALC)
  • 批准号:
    1712389
  • 财政年份:
    2017
  • 资助金额:
    $ 242.86万
  • 项目类别:
    Standard Grant
Engineering Synthetic Symbiosis Between Plant and Bacteria to Deliver Nitrogen to Crops
工程植物和细菌之间的合成共生为作物提供氮
  • 批准号:
    1753917
  • 财政年份:
    2017
  • 资助金额:
    $ 242.86万
  • 项目类别:
    Standard Grant
AGS-PRF: Daytime to Nocturnal Convective Transition in the Central United States
AGS-PRF:美国中部白天到夜间的对流转变
  • 批准号:
    1524435
  • 财政年份:
    2015
  • 资助金额:
    $ 242.86万
  • 项目类别:
    Fellowship Award
Role of the P Clusters and FeMo-Cofactors in Nitrogenase Catalysis
P 簇和 FeMo 辅因子在固氮酶催化中的作用
  • 批准号:
    1330807
  • 财政年份:
    2013
  • 资助金额:
    $ 242.86万
  • 项目类别:
    Standard Grant
The Thermal Biology Institute Research and Education Facility Renovation
热生物学研究所研究和教育设施改造
  • 批准号:
    0963175
  • 财政年份:
    2010
  • 资助金额:
    $ 242.86万
  • 项目类别:
    Standard Grant
16th International Congress on Nitrogen Fixation in Big Sky, Montana
第十六届国际固氮大会在蒙大拿州大天空举行
  • 批准号:
    0848271
  • 财政年份:
    2009
  • 资助金额:
    $ 242.86万
  • 项目类别:
    Standard Grant
Civic Engagement in Non-Majors Introductory Biology: Connecting Problem-Based Learning and Scientific Inquiry
非专业生物学入门的公民参与:将基于问题的学习和科学探究联系起来
  • 批准号:
    0410720
  • 财政年份:
    2004
  • 资助金额:
    $ 242.86万
  • 项目类别:
    Standard Grant
Structural and Biochemical Investigations on Fe-Only Hydrogenases
仅铁氢化酶的结构和生化研究
  • 批准号:
    0328341
  • 财政年份:
    2002
  • 资助金额:
    $ 242.86万
  • 项目类别:
    Continuing Grant

相似国自然基金

miRNA介导的激素合成在共生菌Wolbachia调控宿主灰飞虱生殖力中的作用机制
  • 批准号:
    32372544
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
棘豆属毒草与内生真菌共生及毒素合成的生态遗传学机制研究
  • 批准号:
    32371776
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
新骨架抗真菌抗生素共生霉素的生物合成与作用机制探索
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
共生真菌调节云南切梢小蠹信息素合成的作用机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

2023 Lactic Acid Bacteria Biology, Symbioses and Applications GRC
2023年乳酸菌生物学、共生体和应用GRC
  • 批准号:
    10683583
  • 财政年份:
    2023
  • 资助金额:
    $ 242.86万
  • 项目类别:
2023 Lactic Acid Bacteria Biology, Symbioses and Applications GRC
2023年乳酸菌生物学、共生体和应用GRC
  • 批准号:
    10683583
  • 财政年份:
    2023
  • 资助金额:
    $ 242.86万
  • 项目类别:
Engineering a synthetic symbiosis to solve the nitrogen crisis
设计合成共生来解决氮危机
  • 批准号:
    BB/W009986/1
  • 财政年份:
    2022
  • 资助金额:
    $ 242.86万
  • 项目类别:
    Fellowship
Engineering Synthetic Symbiosis Between Plant and Bacteria to Deliver Nitrogen to Crops
工程植物和细菌之间的合成共生为作物提供氮
  • 批准号:
    1753917
  • 财政年份:
    2017
  • 资助金额:
    $ 242.86万
  • 项目类别:
    Standard Grant
MURINE MODELS CORE
小鼠模型核心
  • 批准号:
    7777673
  • 财政年份:
    2009
  • 资助金额:
    $ 242.86万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了