Collaborative Research: SI2-SSE: WRENCH: A Simulation Workbench for Scientific Worflow Users, Developers, and Researchers

协作研究:SI2-SSE:WRENCH:面向科学 Worflow 用户、开发人员和研究人员的模拟工作台

基本信息

  • 批准号:
    1642369
  • 负责人:
  • 金额:
    $ 25.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Many scientific breakthroughs can only be achieved by performing complex processing of vast amounts of data efficiently. In domains as crucial to our society as climate modeling, oceanography, particle physics, seismology, or computational biology (and in fact in most fields of physics, chemistry, and biology today), scientists nowadays routinely define "scientific workflows". These workflows are complex descriptions of scientific processes as data and inter-dependent computations on these data. When executed, typically with great expenses of computing, storage, and networking hardware, these workflows can produce groundbreaking results. A famous and recent example is the workflow that was used as part of the LIGO project to confirm the first detection of gravitational waves from colliding black holes. Scientific workflows are mainstays in today's science. Their efficient execution (in terms of speed, reliability, and cost) is thus crucial. This project seeks to provide a software framework, called WRENCH (Workflow Simulation Workbench), that will make it possible to simulate large-scale hypothetical scenarios quickly and accurately on a single computer, obviating the need for expensive and time-consuming trial and error experiments. WRENCH potentially enables scientists to make quick and informed choices when executing their workflows, software developers to implement more efficient software infrastructures to support workflows, and researchers to develop novel efficient algorithms to be embedded within these software infrastructures. In addition, WRENCH makes it possible to bring scientific workflow content into undergraduate and graduate computer science curricula. This is because meaningful knowledge can be gained by students using a single computer and the WRENCH software stack, making such learning possible even at institutions without access to high-end computing infrastructures, such as many non-Ph.D.-granting and minority-serving institutions. As a result, this work will contribute to producing computer science graduates better equipped to take an active role in the advancing of science. Due to its potentially transformative impact on scientific workflow usage, development, research, and education, this project promises to promote the progress of science across virtually all its fields, ultimately resulting in broad and numerous benefits to our society.Scientific workflows have become mainstream for conducting large-scale scientific research. As a result, many workflow applications and Workflow Management Systems (WMSs) have been developed as part of the cyberinfrastructure to allow scientists to execute their applications seamlessly on a range of distributed platforms. In spite of many success stories, building large-scale workflows and orchestrating their executions efficiently (in terms of performance, reliability, and cost) remains a challenge given the complexity of the workflows themselves and the complexity of the underlying execution platforms. A fundamental necessary next step is the establishment of a solid "experimental science" approach for future workflow technology development. Such an approach is useful for scientists who need to design workflows and pick execution platforms, for WMS developers who need to compare alternate design and implementation options, and for researchers who need to develop novel decision-making algorithms to be implemented as part of WMSs. The broad objective of this work is to provide foundational software, the Workflow Simulation Workbench (WRENCH), upon which to develop the above experimental science approach. Capitalizing on recent advances in distributed application and platform simulation technology, WRENCH makes it possible to (i) quickly prototype workflow, WMS implementations, and decision-making algorithms; and (ii) evaluate/compare alternative options scalably and accurately for arbitrary, and often hypothetical, experimental scenarios. This project will define a generic and foundational software architecture, that is informed by current state-of-the-art WMS designs and planned future designs. The implementation of the components in this architecture when taken together form a generic "scientific instrument" that can be used by workflow users, developers, and researchers. This scientific instrument will be instantiated for several real-world WMSs and used for a range of real-world workflow applications. In a particular case-study, it will be used with a popular WMS (Pegasus) to revisit published results and scheduling algorithms in the area of workflow planning optimizations. The objective is to demonstrate the benefit of using an experimental science approach for WMS research. Another impact of this project is that it makes it possible to include scientific workflow content pervasively in undergraduate and graduate computer science curricula, even for students without any access to computing infrastructure, by defining meaningful pedagogic activities that only require a computer and the WRENCH software stack. This educational impact will be demonstrated in the classroom in both undergraduate and graduate courses at our institutions.
许多科学突破只能通过有效地对大量数据进行复杂处理才能实现。 在气候建模、海洋学、粒子物理学、地震学或计算生物学等对我们社会至关重要的领域(事实上在当今物理、化学和生物学的大多数领域),科学家们现在通常会定义“科学工作流程”。这些工作流程是将科学过程复杂地描述为数据以及对这些数据的相互依赖的计算。当执行时,通常需要花费大量的计算、存储和网络硬件费用,这些工​​作流程可以产生突破性的结果。最近一个著名的例子是 LIGO 项目的工作流程,该项目用于确认首次检测到来自碰撞黑洞的引力波。科学工作流程是当今科学的支柱。因此,它们的高效执行(在速度、可靠性和成本方面)至关重要。该项目旨在提供一个名为 WRENCH(工作流模拟工作台)的软件框架,使在单台计算机上快速准确地模拟大规模假设场景成为可能,从而避免进行昂贵且耗时的试错实验。 WRENCH 可能使科学家在执行工作流程时做出快速、明智的选择,使软件开发人员能够实施更高效的软件基础设施来支持工作流程,并使研究人员能够开发嵌入这些软件基础设施中的新型高效算法。 此外,WRENCH 还可以将科学工作流程内容引入本科生和研究生计算机科学课程。这是因为学生可以使用单台计算机和 WRENCH 软件堆栈获得有意义的知识,即使在无法访问高端计算基础设施的机构(例如许多非博士学位授予者和少数族裔)也可以进行此类学习。服务机构。因此,这项工作将有助于培养计算机科学毕业生更好地在科学进步中发挥积极作用。 由于其对科学工作流程的使用、开发、研究和教育具有潜在的变革性影响,该项目有望促进几乎所有领域的科学进步,最终为我们的社会带来广泛而众多的利益。科学工作流程已成为主流开展大规模科学研究。 因此,许多工作流应用程序和工作流管理系统 (WMS) 已被开发为网络基础设施的一部分,使科学家能够在一系列分布式平台上无缝执行其应用程序。 尽管有许多成功案例,但鉴于工作流本身的复杂性以及底层执行平台的复杂性,构建大规模工作流并有效地编排其执行(在性能、可靠性和成本方面)仍然是一个挑战。 下一步的基本必要步骤是为未来工作流技术的开发建立可靠的“实验科学”方法。这种方法对于需要设计工作流程和选择执行平台的科学家、需要比较替代设计和实现选项的 WMS 开发人员以及需要开发作为 WMS 一部分实现的新颖决策算法的研究人员非常有用。 这项工作的主要目标是提供基础软件,即工作流程模拟工作台(WRENCH),在此基础上开发上述实验科学方法。 利用分布式应用程序和平台仿真技术的最新进展,WRENCH 可以 (i) 快速构建工作流程原型、WMS 实施和决策算法; (ii) 针对任意且通常是假设的实验场景,可扩展且准确地评估/比较替代方案。 该项目将定义一个通用的基础软件架构,该架构以当前最先进的 WMS 设计和计划的未来设计为基础。 该架构中组件的实现组合在一起形成了一个通用的“科学仪器”,可供工作流用户、开发人员和研究人员使用。 该科学仪器将针对多个现实世界的 WMS 进行实例化,并用于一系列现实世界的工作流程应用程序。在一个特定的案例研究中,它将与流行的 WMS (Pegasus) 一起使用,以重新审视工作流程规划优化领域已发布的结果和调度算法。目的是证明使用实验科学方法进行 WMS 研究的好处。 该项目的另一个影响是,通过定义只需要计算机和 WRENCH 软件堆栈的有意义的教学活动,即使对于无法访问计算基础设施的学生,也可以将科学工作流程内容普遍纳入本科生和研究生计算机科学课程中。这种教育影响将在我们机构的本科生和研究生课程的课堂上得到体现。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Checkpointing Workflows for Fail-Stop Errors
WRENCH: Workflow Management System Simulation Workbench
WRENCH:工作流程管理系统模拟工作台
Computing the expected makespan of task graphs in the presence of silent errors
在存在无提示错误的情况下计算任务图的预期完工时间
  • DOI:
    10.1016/j.parco.2018.03.004
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Casanova, Henri;Herrmann, Julien;Robert, Yves
  • 通讯作者:
    Robert, Yves
SMPI Courseware: Teaching Distributed-Memory Computing with MPI in Simulation
SMPI 课件:在仿真中使用 MPI 教授分布式内存计算
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Casanova, H.;Quinson, M.;Legrand, A.;Suter, F.
  • 通讯作者:
    Suter, F.
Accurately Simulating Energy Consumption of I/O-Intensive Scientific Workflows
  • DOI:
    10.1007/978-3-030-22734-0_11
  • 发表时间:
    2019-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rafael Ferreira da Silva;Anne-Cécile Orgerie;H. Casanova;Ryan Tanaka;E. Deelman;F. Suter
  • 通讯作者:
    Rafael Ferreira da Silva;Anne-Cécile Orgerie;H. Casanova;Ryan Tanaka;E. Deelman;F. Suter
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Henri Casanova其他文献

High-Bandwidth Low-Latency Approximate Interconnection Networks
高带宽低延迟近似互连网络
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daichi Fujiki;Kiyo Ishii;Ikki Fujiwara;Hiroki Matsutani;Hideharu Amano ;Henri Casanova;Michihiro Koibuchi
  • 通讯作者:
    Michihiro Koibuchi
LEDを用いた顕微鏡観察の工夫
使用 LED 进行显微观察的想法
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ikki Fujiwara;Michihiro Koibuchi. Tomoya Ozaki;Hiroki Matsutani;Henri Casanova;稲垣貴大・結縁祥治;野津昭文,大前勝弘,江口真透;竹下 俊治,雜賀 大輔,間賀 綾音,時澤 味佳
  • 通讯作者:
    竹下 俊治,雜賀 大輔,間賀 綾音,時澤 味佳
KSMを用いたメモリ最適化による仮想化環境におけるCassandra性能の向上
使用 KSM 通过内存优化来提高虚拟化环境中的 Cassandra 性能
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ikki Fujiwara;Michihiro Koibuchi;Hiroki Matsutani;Henri Casanova;Tachio Terauchi;徳田 大輝,御代川 翔平,山口 実靖
  • 通讯作者:
    徳田 大輝,御代川 翔平,山口 実靖
一般化ガンマクラスタリングについて
关于广义伽马聚类
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ikki Fujiwara;Michihiro Koibuchi. Tomoya Ozaki;Hiroki Matsutani;Henri Casanova;稲垣貴大・結縁祥治;野津昭文,大前勝弘,江口真透
  • 通讯作者:
    野津昭文,大前勝弘,江口真透
Discussion on Approximate Interconnection Networks
近似互连网络的讨论
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nguyen T. Truong;Henri Casanova;鯉渕 道紘
  • 通讯作者:
    鯉渕 道紘

Henri Casanova的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Henri Casanova', 18)}}的其他基金

Collaborative Research: Elements: Simulation-driven Evaluation of Cyberinfrastructure Systems
协作研究:要素:网络基础设施系统的仿真驱动评估
  • 批准号:
    2103489
  • 财政年份:
    2021
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Simulation-driven runtime resource management for distributed workflow applications
协作研究:OAC Core:分布式工作流应用程序的模拟驱动的运行时资源管理
  • 批准号:
    2106059
  • 财政年份:
    2021
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Standard Grant
CCRI: Planning: Collaborative Research: Infrastructure for Enabling Systematic Development and Research of Scientific Workflow Management Systems
CCRI:规划:协作研究:支持科学工作流程管理系统系统开发和研究的基础设施
  • 批准号:
    2016610
  • 财政年份:
    2020
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Implementation: Small: Integrating core CI literacy and skills into university curricula via simulation-driven activities
协作研究:网络培训:实施:小型:通过模拟驱动的活动将核心 CI 素养和技能融入大学课程
  • 批准号:
    1923621
  • 财政年份:
    2019
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Standard Grant
Collaborative Research: II-New: Distributed Research Testbed (DiRT)
协作研究:II-新:分布式研究测试台 (DiRT)
  • 批准号:
    0855245
  • 财政年份:
    2009
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Standard Grant
Collaborative Research: CSR-PDOS: Designing Large-Scale Distributed Systems for Realistic Failure Models
合作研究:CSR-PDOS:为现实故障模型设计大规模分布式系统
  • 批准号:
    0546688
  • 财政年份:
    2005
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Standard Grant

相似国自然基金

离子型稀土渗流-应力-化学耦合作用机理与溶浸开采优化研究
  • 批准号:
    52364012
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
亲环蛋白调控作物与蚜虫互作分子机制的研究
  • 批准号:
    32301770
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于金属-多酚网络衍生多相吸波体的界面调控及电磁响应机制研究
  • 批准号:
    52302362
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
职场网络闲逛行为的作用结果及其反馈效应——基于行为者和观察者视角的整合研究
  • 批准号:
    72302108
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
EIF6负调控Dicer活性促进EV71复制的分子机制研究
  • 批准号:
    32300133
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: SI2-SSI: Expanding Volunteer Computing
合作研究:SI2-SSI:扩展志愿者计算
  • 批准号:
    2039142
  • 财政年份:
    2020
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Standard Grant
SI2-SSI: Collaborative Research: Einstein Toolkit Community Integration and Data Exploration
SI2-SSI:协作研究:Einstein Toolkit 社区集成和数据探索
  • 批准号:
    2114580
  • 财政年份:
    2020
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Continuing Grant
Collaborative Research: SI2-SSI: Expanding Volunteer Computing
合作研究:SI2-SSI:扩展志愿者计算
  • 批准号:
    2001752
  • 财政年份:
    2019
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Standard Grant
Collaborative Research: NISC SI2-S2I2 Conceptualization of CFDSI: Model, Data, and Analysis Integration for End-to-End Support of Fluid Dynamics Discovery and Innovation
合作研究:NISC SI2-S2I2 CFDSI 概念化:模型、数据和分析集成,用于流体动力学发现和创新的端到端支持
  • 批准号:
    1743178
  • 财政年份:
    2018
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Continuing Grant
Collaborative Research: NISC SI2-S2I2 Conceptualization of CFDSI: Model, Data, and Analysis Integration for End-to-End Support of Fluid Dynamics Discovery and Innovation
合作研究:NISC SI2-S2I2 CFDSI 概念化:模型、数据和分析集成,用于流体动力学发现和创新的端到端支持
  • 批准号:
    1743185
  • 财政年份:
    2018
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了