Using novel genetic and isotopic techniques to understanding how microbial activity affects rates of dissolution of the mineral olivine.

使用新颖的遗传和同位素技术来了解微生物活动如何影响矿物橄榄石的溶解速率。

基本信息

  • 批准号:
    1324929
  • 负责人:
  • 金额:
    $ 12.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-06-01 至 2019-05-31
  • 项目状态:
    已结题

项目摘要

The results of this research will advance basic understanding in the Earth sciences and will have practical implications for understanding Earth's carbon cycle and the potential for carbon sequestration in mineral substrates. The chemical breakdown of minerals ("mineral dissolution") regulates the availability of carbon and other nutrient elements across a range of scales in space and time. This means that understanding mineral dissolution is fundamental to the study of the Earth system, and particularly to the study of Earth's climate and biosphere. The rate at which minerals dissolve is known to depend on a number of factors. Of these, the roles of biological activity and the approach to thermodynamic equilibrium remain particularly poorly understood. This knowledge gap stands in the way of efforts to develop models that scale laboratory observations to field conditions and makes it difficult to use the results from experimental studies to address large-scale Earth system problems. Meanwhile studies of weathering in natural systems are often confounded by multiple variables. The project proposed here will use novel experimental methods to take a major step forward in understanding how microbial activity and the approach to equilibrium affect the dissolution rate of the silicate mineral olivine. Olivine plays a key role in the carbon cycle as a primary constituent of highly weatherable rocks, and has been proposed as a substrate for carbon dioxide sequestration, making it a noteworthy mineral for focused investigation.Numerous field observations have shown that biological activity drives higher increased silicate weathering rates, but a mechanistic understanding is lacking because prior experimental efforts have been complicated by variations in the activity and phenotypic expression of organisms within and between experiments. To minimize this variability, experiments in the proposed study will be preformed using microorganisms with targeted genetic mutations. With this approach, the effects of a single microbial process can be isolated and quantified over a range of environmental conditions, allowing for a more robust determination of the effects of biological activity on olivine dissolution rates than have previously been possible. The dependence of mineral dissolution rates on the departure from thermodynamic equilibrium is a critical factor that controls dissolution rates in natural environments. Theoretical predictions vary significantly in both the functional form of the thermodynamic equilibrium dependence as well as the value of the thermodynamic equilibrium at which a significant change in rate is observed. For olivine, near-equilibrium experiments are complicated because solutions become supersaturated with respect to secondary magnesium silicate minerals that precipitate at non-negligible rates, making it impossible to quantify dissolution rates using standard methodologies. To circumvent this problem, a novel method of determining dissolution rates by isotope dilution will be used to study the near equilibrium dissolution kinetics of olivine.The project will support the training of a doctoral student, who will supervise high school students from traditionally underrepresented backgrounds. The doctoral student will also lead the development of a laboratory exercise that demonstrates the carbon dioxide sequestration potential of the mineral olivine while teaching basic science concepts. This exercise will be incorporated into a display at the University of Southern California and will be provided free of charge over the Internet for educational use at other institutions.
这项研究的结果将增进对地球科学的基本了解,并对了解地球的碳循环和矿物基质中碳封存的潜力具有实际意义。矿物质的化学分解(“矿物质溶解”)在不同的空间和时间尺度上调节碳和其他营养元素的可用性。这意味着了解矿物溶解对于地球系统的研究,特别是对地球气候和生物圈的研究至关重要。众所周知,矿物质溶解的速度取决于许多因素。其中,生物活性的作用和热力学平衡的方法仍然知之甚少。这种知识差距阻碍了开发模型的努力,这些模型将实验室观测扩展到现场条件,并且很难利用实验研究的结果来解决大规模的地球系统问题。与此同时,对自然系统风化的研究常常受到多个变量的困扰。这里提出的项目将使用新颖的实验方法,在了解微生物活动和平衡方法如何影响硅酸盐矿物橄榄石的溶解速率方面迈出重要一步。橄榄石作为高耐候岩石的主要成分,在碳循环中发挥着关键作用,并被提议作为二氧化碳封存的底物,使其成为重点研究的值得注意的矿物。大量的现场观察表明,生物活性推动了更高的增加硅酸盐风化速率,但缺乏机制理解,因为先前的实验工作因实验内和实验之间生物体的活性和表型表达的变化而变得复杂。为了最大限度地减少这种变异性,拟议研究中的实验将使用具有目标基因突变的微生物进行。通过这种方法,可以在一系列环境条件下分离和量化单一微生物过程的影响,从而比以前更可靠地确定生物活性对橄榄石溶解速率的影响。矿物溶解速率对热力学平衡偏离的依赖性是控制自然环境中溶解速率的关键因素。理论预测在热力学平衡依赖性的函数形式以及观察到速率显着变化的热力学平衡值方面都有很大差异。对于橄榄石,近平衡实验很复杂,因为溶液对于以不可忽略的速率沉淀的次生硅酸镁矿物来说变得过饱和,使得不可能使用标准方法来量化溶解速率。为了解决这个问题,将使用一种通过同位素稀释确定溶解速率的新方法来研究橄榄石的近平衡溶解动力学。该项目将支持培养一名博士生,该博士生将监督传统上代表性不足的背景的高中生。该博士生还将领导一项实验室练习的开发,在教授基本科学概念的同时展示矿物橄榄石的二氧化碳封存潜力。该练习将纳入南加州大学的展示中,并将通过互联网免费提供,供其他机构的教育用途。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

A Joshua West其他文献

A Joshua West的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('A Joshua West', 18)}}的其他基金

Collaborative Research: NNA Research: Developing capacity for planning and adapting to riverbank erosion and its consequences in the Yukon River Basin
合作研究:NNA 研究:发展规划和适应育空河流域河岸侵蚀及其后果的能力
  • 批准号:
    2127444
  • 财政年份:
    2022
  • 资助金额:
    $ 12.46万
  • 项目类别:
    Standard Grant
NSFGEO-NERC Collaborative Research: Coupling Erosion, Weathering, and Hydrologic Function in an Active Orogenic System
NSFGEO-NERC 合作研究:活跃造山系统中侵蚀、风化和水文功能的耦合
  • 批准号:
    2021619
  • 财政年份:
    2020
  • 资助金额:
    $ 12.46万
  • 项目类别:
    Continuing Grant
RAPID: Collaborative Research: Tracking Amazon Forest Fires from Source to Sink
RAPID:合作研究:追踪亚马逊森林火灾从源头到汇点
  • 批准号:
    2000127
  • 财政年份:
    2019
  • 资助金额:
    $ 12.46万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Shared Multi Collector Inductively Coupled Plasma Mass Spectrometer for Ocean, Earth, Environmental, and Geobiological Sciences in Southern California
MRI:购买一台共享多收集器电感耦合等离子体质谱仪,用于南加州的海洋、地球、环境和地球生物科学
  • 批准号:
    1920355
  • 财政年份:
    2019
  • 资助金额:
    $ 12.46万
  • 项目类别:
    Standard Grant
Collaborative Research: Landslides related to the 2015 Mw 7.8 Gorkha earthquake, from ground motion and hazard to geomorphic response
合作研究:与 2015 年 7.8 级廓尔喀地震相关的山体滑坡,从地面运动和灾害到地貌响应
  • 批准号:
    1640894
  • 财政年份:
    2016
  • 资助金额:
    $ 12.46万
  • 项目类别:
    Standard Grant
RAPID Collaborative Research: Landslides caused by the April 2015 Nepal earthquakes, from immediate hazard to tectonic driver
RAPID 合作研究:2015 年 4 月尼泊尔地震引起的山体滑坡,从直接危害到构造驱动因素
  • 批准号:
    1546630
  • 财政年份:
    2015
  • 资助金额:
    $ 12.46万
  • 项目类别:
    Standard Grant
CAREER: Taking the hydrochemical pulse of the critical zone in small catchments of the Andes-Amazon
职业:掌握安第斯山脉-亚马逊小流域关键区域的水化学脉搏
  • 批准号:
    1455352
  • 财政年份:
    2015
  • 资助金额:
    $ 12.46万
  • 项目类别:
    Standard Grant
Transitions in the Banda Arc-Australia Continental Collision as a Bridge to Understanding Mantle and Lithospheric Controls on Surface Tectonics
班达弧-澳大利亚大陆碰撞的转变是理解地幔和岩石圈对地表构造控制的桥梁
  • 批准号:
    1250214
  • 财政年份:
    2013
  • 资助金额:
    $ 12.46万
  • 项目类别:
    Continuing Grant
A compound-specific isotopic approach to quantifying the source of terrestrial organic matter transported by a large river
一种化合物特异性同位素方法,用于量化大河输送的陆地有机物的来源
  • 批准号:
    1227192
  • 财政年份:
    2012
  • 资助金额:
    $ 12.46万
  • 项目类别:
    Standard Grant
Quantifying the effects of an extreme earthquake on a large river system
量化极端地震对大型河流系统的影响
  • 批准号:
    1053504
  • 财政年份:
    2011
  • 资助金额:
    $ 12.46万
  • 项目类别:
    Continuing Grant

相似国自然基金

海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
  • 批准号:
    82304658
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
  • 批准号:
    82070530
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

Using epigenetic science to improve environmental health literacy
利用表观遗传学提高环境健康素养
  • 批准号:
    10524680
  • 财政年份:
    2023
  • 资助金额:
    $ 12.46万
  • 项目类别:
MICA: Interrogating the functional impact of novel asthma genetic variants using genomics and inducible pluripotent stem cell-derived epithelial cells
MICA:利用基因组学和诱导多能干细胞衍生的上皮细胞探讨新型哮喘遗传变异的功能影响
  • 批准号:
    MR/X000974/1
  • 财政年份:
    2023
  • 资助金额:
    $ 12.46万
  • 项目类别:
    Fellowship
Elucidating the role of pericytes in angiogenesis in the brain using a tissue-engineered microvessel model
使用组织工程微血管模型阐明周细胞在大脑血管生成中的作用
  • 批准号:
    10648177
  • 财政年份:
    2023
  • 资助金额:
    $ 12.46万
  • 项目类别:
Dissecting the logic of mammalian gene regulation using synthetic biology and single-cell sequencing
使用合成生物学和单细胞测序剖析哺乳动物基因调控的逻辑
  • 批准号:
    10696717
  • 财政年份:
    2023
  • 资助金额:
    $ 12.46万
  • 项目类别:
Screening using split fluorescent protein tags for neurotransmitter receptors that define a synaptic balance in neuralcircuits
使用分裂荧光蛋白标签筛选神经递质受体,定义神经回路中的突触平衡
  • 批准号:
    10805112
  • 财政年份:
    2023
  • 资助金额:
    $ 12.46万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了