Non-Linear Homogenization of Porous Anisotropic Materials: Applications to Plastic and Magnetic Shape-Memory Alloys

多孔各向异性材料的非线性均质化:在塑料和磁性形状记忆合金中的应用

基本信息

  • 批准号:
    1332965
  • 负责人:
  • 金额:
    $ 34.03万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-01 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

The research objective of this award is to investigate the effect of porosity and to develop constitutive models accounting for this effect in two different types of kinematically constrained material systems. Examples of the first type include low-symmetry metals, such as magnesium and zirconium alloys, which are nominally incompressible polycrystalline aggregates, but which can undergo significant volumetric strains when porosity is present. Examples of the second type include magnetic shape-memory alloys, such as nickel-manganese-gallium systems, which have been found to exhibit "giant" field-induced strains in costly single crystals, but only minimal magnetostriction in cheaper polycrystals. In this case, the presence of porosity can help relax the internal kinematic constraints in the polycrystal due to the strong orientational character of the magnetostriction in the grains that tend to block each other?s strains. The main challenge is to properly account for the dilatational and relaxational effects of the porosity in constitutive models for the response of these materials under general loading conditions. This will be accomplished by means of a recently developed "iterated" nonlinear homogenization technique, which makes use of suitably chosen "linear comparison" media to generate highly accurate and efficient estimates for the coupled, nonlinear response of porous single-crystal and polycrystalline samples of these materials.If successful, the benefits of this research will include improved understanding and advanced modeling of the mechanical properties of high-performance metal alloys for energy-efficient applications in the automotive, aerospace and nuclear industries, as well as of the magneto-elastic response of magnetic shape-memory alloys for applications such as actuators, sensors and energy-harvesting devices. The research is also expected to lead to improved characterization of net-shape metal-forming operations, as well as of ductile failure in polycrystalline materials via void growth and coalescence. In addition, the results will be of interest for modeling of geomaterials, such as ice, halite and olivine. The work may also be relevant for the development of other active material systems, such as certain types of polycrystalline ferroelectrics.
该奖项的研究目标是研究孔隙度的效果,并在两种不同类型的运动型材料系统中开发构成模型。第一种类型的例子包括低对称金属,例如镁和锆合金,它们是名义上不可压缩的多晶骨料,但是当存在孔隙率时,它们可能会出现明显的体积菌株。第二种类型的示例包括磁性 - 记忆合金,例如镍曼加尼亚高级系统,已发现它们在昂贵的单晶中表现出“巨型”野外诱导的菌株,但仅在廉价的多晶中显示了最小的磁曲折。在这种情况下,孔隙率的存在可以帮助放松多晶的内部运动学约束,这是由于晶粒中磁截图的强度定向特征,这些特征倾向于相互阻塞。主要的挑战是正确地说明构成模型中孔隙率在一般加载条件下对这些材料响应的扩张和松弛效应。这将是通过最近开发的“迭代”非线性均质化技术来完成的,该技术利用适当选择的“线性比较”介质来生成高度准确,有效的估计值这些材料。如果成功,这项研究的好处将包括对高性能金属合金的机械性能的理解和高级建模,用于在汽车,航空和核行业中的能源有效应用,以及磁弹性磁形形状 - 内存合金对执行器,传感器和能量收获设备等应用的响应。预计该研究还可以改善净形金属形成操作的表征,以及通过空隙的生长和合并来改善多晶材料中延性的特性衰竭。另外,结果将引起建模地材料(例如冰,卤石和橄榄石)的建模。 这项工作也可能与其他活性材料系统的开发有关,例如某些类型的多晶铁电基质。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pedro Ponte Castaneda其他文献

Pedro Ponte Castaneda的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pedro Ponte Castaneda', 18)}}的其他基金

Magneto-Active Elastomers: Homogenization, Instabilities and Relaxation
磁活性弹性体:均质化、不稳定性和松弛
  • 批准号:
    1613926
  • 财政年份:
    2016
  • 资助金额:
    $ 34.03万
  • 项目类别:
    Standard Grant
Pattern-Changing Instabilities and Giant Magnetostriction in Periodic Magnetoelastic Composites
周期性磁弹性复合材料中的图案变化不稳定性和巨磁致伸缩
  • 批准号:
    1068769
  • 财政年份:
    2011
  • 资助金额:
    $ 34.03万
  • 项目类别:
    Standard Grant
Non-Convex Homogenization and Applications to (Ferromagnetic) Shape-Memory Polycrystals
非凸均质化及其在(铁磁)形状记忆多晶中的应用
  • 批准号:
    1108847
  • 财政年份:
    2011
  • 资助金额:
    $ 34.03万
  • 项目类别:
    Standard Grant
Fiber-Reinforced Polymeric Material Systems: A Multi-Scale, Elasto-Viscoplastic Homogenization Approach
纤维增强聚合物材料系统:多尺度弹粘塑性均质化方法
  • 批准号:
    0969570
  • 财政年份:
    2010
  • 资助金额:
    $ 34.03万
  • 项目类别:
    Standard Grant
Homogenization-Based Constitutive Models for Magnetorheological Elastomers at Finite Strain
有限应变磁流变弹性体基于均质化的本构模型
  • 批准号:
    0708271
  • 财政年份:
    2007
  • 资助金额:
    $ 34.03万
  • 项目类别:
    Standard Grant
Finite-Strain, Constitutive Models for Semi-Crystalline Polymers
半结晶聚合物的有限应变本构模型
  • 批准号:
    0654063
  • 财政年份:
    2007
  • 资助金额:
    $ 34.03万
  • 项目类别:
    Standard Grant
NATO Advanced Research Workshop on Nonlinear Homogenization and Applications to Composites, Polycrystals and Smart Materials; June 23-26, 2003; Kazimierz Dolny, Poland
北约非线性均质化及其在复合材料、多晶和智能材料中的应用高级研究研讨会;
  • 批准号:
    0305443
  • 财政年份:
    2003
  • 资助金额:
    $ 34.03万
  • 项目类别:
    Standard Grant
US-France Cooperative Research: Field Fluctuations, Microstructure Evolution and Coupled Phenomena in Random Heterogeneous Materials
美法合作研究:随机异质材料中的场涨落、微观结构演化和耦合现象
  • 批准号:
    0231867
  • 财政年份:
    2003
  • 资助金额:
    $ 34.03万
  • 项目类别:
    Standard Grant
Nonlinear Homogenization and Applications to Porous and Nematic Elastomers
非线性均质化及其在多孔和向列弹性体中的应用
  • 批准号:
    0204617
  • 财政年份:
    2002
  • 资助金额:
    $ 34.03万
  • 项目类别:
    Continuing grant
Macroscopic Behavior and Field Fluctuations in Random Heterogeneous Materials: Theory and Applications
随机异质材料的宏观行为和场涨落:理论与应用
  • 批准号:
    0201454
  • 财政年份:
    2002
  • 资助金额:
    $ 34.03万
  • 项目类别:
    Continuing grant

相似国自然基金

基于一维线性结构的氟化电解质设计及在固态高压锂金属电池中的性能研究
  • 批准号:
    52302083
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
考虑静风效应和振幅影响的超大跨度悬索桥非线性颤振演化机理研究
  • 批准号:
    52378537
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
多晶钙钛矿X射线探测器非线性电流响应机理与抑制研究
  • 批准号:
    62304236
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非线性模型结构性误差的动力学订正方法研究
  • 批准号:
    42375059
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
复杂网络上非线性动力系统临界点的严格边界
  • 批准号:
    12305038
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Scalable algorithms for regularized and non-linear genetic models of gene expression
职业:基因表达的正则化和非线性遗传模型的可扩展算法
  • 批准号:
    2336469
  • 财政年份:
    2024
  • 资助金额:
    $ 34.03万
  • 项目类别:
    Continuing Grant
Regulation of Linear Ubiquitin Signaling in Innate Immunity
先天免疫中线性泛素信号传导的调节
  • 批准号:
    MR/X036944/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.03万
  • 项目类别:
    Research Grant
Computational and neural signatures of interoceptive learning in anorexia nervosa
神经性厌食症内感受学习的计算和神经特征
  • 批准号:
    10824044
  • 财政年份:
    2024
  • 资助金额:
    $ 34.03万
  • 项目类别:
Statistical aspects of non-linear inverse problems
非线性反问题的统计方面
  • 批准号:
    EP/Y030249/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.03万
  • 项目类别:
    Research Grant
CAREER: Theoretical and Computational Advances for Enabling Robust Numerical Guarantees in Linear and Mixed Integer Programming Solvers
职业:在线性和混合整数规划求解器中实现鲁棒数值保证的理论和计算进展
  • 批准号:
    2340527
  • 财政年份:
    2024
  • 资助金额:
    $ 34.03万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了